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Abstract Gas injection leads to foam formation in porousmedia in the presence of surfactant
solutions, which is used for flow diversion and enhanced oil recovery. We present here
laboratory experiments of co-injecting nitrogen and sodium C14−16 alpha olefin sulfonate
with two concentrations: 20× the critical micelle concentration (CMC) in an unconsolidated
sandpack of 1860 Darcy and at the CMC for a Bentheimer sandstone of 3 Darcy. The steady
state profile for the unconsolidated sandpack is achieved after 1.3 pore volumes, whereas
for Bentheimer sandstone, steady state is obtained after injection of 12–15 pore volume. A
model that leads to four equations, viz., a pressure equation, a water saturation equation, a
bubble density equation and a surfactant transport–adsorption equation, is used to explain
the experimental pressure drop. It is asserted that the experimental pressure drop across the
measurement points can be used to obtain a first estimate of the average bubble density,
which can be further used to obtain part of the source term in the bubble density equation. If
we consider flowing fraction of foam, the rate of change of bubble density during transient
state can be equated to the bubble density generation-coalescence function plus the terms
accounted for bubble transport by convection and diffusion divided by porosity and saturation.

Keywords Foammodel ·Experiments ·Bubble generation-coalescence function · Pressure
drop history · Adsorption

1 Introduction

Foam can improve a water flood or a gas drive by decreasing the mobility (phase permeabil-
ity/apparent viscosity) of the displacing fluids in the reservoir (Bond and Holbrook 1958;
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Craig and Lummus 1965; Holm 1968). The prediction of foam behavior in porous media
relies on proper modeling of the mobility reduction validated by experiments. For the exper-
iments where co-injection of gas and surfactant solution is considered, i.e., pre-generation of
foam, one can use the saturation profiles, surfactant concentration profiles, the effluent water
cut and the experimental pressure drop for the validation of models (Khatib et al. 1988; Falls
et al. 1989; Persoff et al. 1991; Friedmann et al. 1991; Liu et al. 1992; Fergui et al. 1998;
Carretero-Carralero et al. 2007; Du et al. 2011). A detailed summary of the literature on
foam models can be found in Ma et al. (2014). Most modeling attempts are for experiments
with surfactant concentrations well above the critical micelle concentration (CMC) where
the buildup of pressure profiles occurs before the injection of about one pore volume. There
are only a few experimental data reported in the literature of measured pressure drops with
injected concentrations around the CMC, for example by Apaydin and Kovscek (2001). The
effluent concentration profile of Suntech IV (an alkyl toluene sulfonate) for Berea sandstone
indicates a retardation factor of about 12 for 0.02 w/w % (Huh and Handy 1989). In case
of Chaser CD1040 (an alpha olefin sulfonate) with concentrations near the CMC, the steady
pressure drop profile is attained after 3–6 pore volumes (PV) in case of Berea sandstones
(Chou 1991). To interpret such an observed delay in the pressure drop, one needs models that
incorporate the transient development of foam bubbles. Therefore, our interest is in bubble
population models by Falls et al. (1988), Ettinger and Radke (1992), Kovscek et al. (1995),
Zitha et al. (2006) and Simjoo (2012) that can explain the transient pressure drop at high
concentrations as well as at low concentrations, i.e., around CMC.

The bubble population models, mentioned above, combine bubble density balance inside
the multiphase flow equations. These multiphase flow equations consist of a water equation,
an equation for foam that behaves as a gas with an enhanced viscosity μ f , a bubble density
equation and occasionally a surfactant transport equation. The equations can be solved by
using the IMPES method (IMplicit Pressure–Explicit Saturation) described by Aziz and
Settari (1979). For simplicity, the flowing bubble density is assumed to be equal to the
nonflowing (trapped) bubble density by Kovscek et al. (1995). Therefore, the foam flow in
the porous media in case of co-injection of gas and surfactant water can be considered as a
flow of two phases, given by the standard Darcy’s law, i.e.,

u f = −kkr f
μ f

(�p f − ρ f g), (1)

where, for foam, u f is the superficial velocity, k is the absolute permeability, kr f is the relative
permeability, ρ f is the density and �p f is the observed pressure drop. However, according
to Kovscek et al. (1995), μ f is not constant. To estimate the varying viscosity of foam in the
two-phase concept, the smallest pores are assumed to be filled with a surfactant solution and
other pores with gas bubbles separated by lamellae. A pore level model of foam in porous
media consists of bubbles moving in a straight capillary tube (Hirasaki and Lawson 1985).
The main resistance of the foam bubble is due to the lamellae that separate the bubble from
the pore wall (Bretherton 1961). In addition, the surface tension gradient across the moving
bubble contributes significantly to the resistance to foam flow (Hirasaki and Lawson 1985).
The added resistance of all bubbles inside the tube can be used to obtain expressions for
the apparent foam viscosity. Consequently, the bubble density is an important parameter to
estimate the foam viscosity with a fitting parameter α as given by Kovscek et al. (1995);

μ f = μg + α n f

v
1/3
f

, (2)
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where n f is the bubble density (number of bubbles per unit distance of the capillary), μg

is the viscosity of unfoamed gas and v f is the local interstitial velocity depending on the
foamed gas saturation and the fraction of flowing foamed gas.

The bubble density equation, with the apparent viscosity of foam as given above, con-
tains a bubble generation-coalescence function expressed by a source term, R(n f ), which
is in essence a difference between generation and coalescence rates of bubbles. In most
literatures, this source term is based on the assumed foam generation-coalescence mech-
anisms, e.g., lamellae creation by capillary snap-off, bubble division, bubble coalescence
by mass transfer between bubbles (Falls et al. 1988; Rossen 2003). For example, Kovscek
et al. (1995) expressed the generation rate with the gas and liquid velocities and the coa-
lescence rate as a function of the bubble density. Similarly, Zitha et al. (2006) proposed a
foam generation-coalescence function with an exponential growth of the bubble density for
transient foam flow. However, if saturation and flowing fraction of the foam is unknown, an
exact bubble generation-coalescence function cannot be directly obtained from the experi-
ments. Therefore, in comparison with previous studies, we propose to determine the bubble
generation-coalescence function, i.e., the source term R(n f ) approximately from the exper-
imental pressure drop without a priori knowledge of foamed gas saturation and flowing
fraction of foam. In our procedure, a first estimate of the bubble density n f is obtained from
history matching of the experimental pressure drop. Combining Eqs. 1 and 2, we obtain
disregarding μg that

n f = kkr f (�p f − ρ f g)

α u f
(v f )

1/3. (3)

As gas saturation and flowing fraction of foam is unknown, it is assumed that foamed gas is
the only phase in the porous medium and all foamed gas (foam) is flowing. Therefore, the
foam relative permeability, kr f , is equivalent to the permeability, k, and the local interstitial
velocity v f is equal to

u f
ϕ
, using that the water saturation is very low. We hypothesize that

in such a case, the source term is the derivative of the bubble density, estimated from the
experimental pressure drop with respect to time, R(n f ) ≈ dn f /dt . We assume that the
viscosity coefficient α is constant for the case where the adsorption condition is satisfied;
i.e., the porous medium is saturated with surfactant, which happens at high concentration. At
low concentration (around CMC), we assume that the viscosity coefficient α varies when the
surfactant concentration in the porous medium varies. For such cases, α is calculated from
the surface tension of the injected surfactant concentration derived from the work of Hirasaki
and Lawson (1985). We expect that this procedure to estimate R(n f ) indeed gives only a
first estimate. Once the bubble density is estimated from the experimental pressure drop, the
flowing fraction of foam (bubbles) can be estimated by the approximation used by Tang and
Kovscek (2006) elaborated in Sect. 3.3. In addition, we calculate the water saturation with
the estimated bubble density for a condition of constant foam quality. We assume that the gas
saturation remains below the critical gas saturation; therefore, foam does not collapse (Zhou
and Rossen 1995). With the saturation and the flowing fraction of foam is known, R(n f ),
when fully implemented in a flow model should be able to give a simulated pressure drop
history that corresponds to the experimental pressure drop history. With the pressure drops
comparable to each other, a realistic contribution of the derivative of the bubble density to
the source term can be proposed, as described in Sect. 3.8.

To validate our procedure, we carried out foam flow experiments that used co-injection of
AOS and N2 at two concentrations, i.e., at 0.0375 w/w% in double distilled water (CMC) for
Bentheimer and at 0.075 w/w % in brine (20× CMC) for the unconsolidated sandpack. We
intend to useBentheimer experiments for a comparisonwith experimentswhere nanoparticles
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were co-injected. The optimal stability of these particles was found at pH 3. Therefore, we
choose pH = 3 for the Bentheimer case. Section 2.1 describes the experimental set-up, sample
preparation and measurement techniques. In contrast to most literature results, we describe
foam flow experiments for a long time (maximum 30 pore volumes) in Sect. 2.2. In addition,
we describe in Sect. 2.3 a separate single-phase adsorption test with a Bentheimer core at
conditions identical to foam flow experiments to get the adsorption parameters. The main
experimental result, shown in Sect. 2.4, is the pressure drop history between twomeasurement
points and the time required to attain a stationary value. Section 3 is about modeling where
Sect. 3.1 describes the 1-Dmodel considering downward vertical flow. The balance equations
for water-foamed gas and for bubble density with a bubble generation-coalescence function
are described in Sect. 3.2. In addition, the pressure equation is used to calculate the simulated
pressure drop. In the same Sect. 3.2, two model equations are included for the surfactant
adsorption and transport. The procedure to estimate R(n f ) from the measured pressure drop
in terms of the bubble density is explained in Sect. 3.3. The procedure to estimate α, a
fitting parameter in the viscosity Eq. 2 from the surfactant concentration, is explained in
Sect. 3.4. Boundary conditions are described in Sect. 3.5. We take the case of Bentheimer
with the low concentration for the numerical simulation. The model equations from Sect. 3.2
are converted into weak form (Haberman 2004) in Sect. 3.6 to facilitate implementation in
COMSOL, a commercial finite element software package. Subsequently, we describe the
simulation results (Sect. 3.7) in terms of the water saturation and flowing fraction of foam. In
addition, we describe the relation between the bubble density and surfactant concentration for
the given simulation. Further, instead of splitting R(n f ) like in most studies, we investigate
terms on the other side of the bubble density equation, i.e., accumulation, convection and
dispersion (diffusion). We determine the relative importance of the bubble accumulation and
convection-diffusion terms in Sect. 3.8, where the flowing fraction of foam and the foam
saturation is considered. In Sect. 3.9, we compare the experimental pressure drop and the
simulated pressure drop for the case of Bentheimer. We end with some conclusions about
the procedure used, about the foam generation-coalescence function and about the estimate
of the experimental pressure drop.

2 Experimental

2.1 Experimental Set-Up

Figure 1 shows the set-up for the foam flow experiments. The set-up consists of an injection
module, the core holder containing the sample (24), a production module and measurement
equipment. The injection module uses a Pharmacia pump p-900 (12) of the reciprocating
type (two cylinders, one for injection and one for refill) with a pumping rate 15–450 ml/h.
The injection module further contains a storage glass vessel (13) containing the surfactant
solution and a nitrogen gas supply system (1). The storage vessel is connected to the pump by
a polymer (nylon) tubing with an inside diameter of 2 mm and an approximate length of 1 m.
Nylon tubing with the same diameter connects the pump to a T-junction via valves 3 and 4.
Nitrogen gas at a pressure 7.0 ± 0.1 barA (absolute pressure) is added through valve 3. The
core holder contains either a unconsolidated sandpack or a Bentheimer sandstone core. The
experiment with the sandpack was conducted with the flow from bottom to top. However,
it was easier to do experiments with the flow direction from top to bottom with our set-up.
Therefore, we switched the direction for theBentheimer experiments.We consider the gravity
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Fig. 1 Flow scheme of the set-up used for the foam experiments. The directional signs show the path of
the fluids (for example top to bottom of the porous medium). The surfactant solution (13) is mixed with N2
gas by opening valves (3) and (4) upstream of the unconsolidated sandpack or a Bentheimer core (24). The
valves (2–10 and 20) control the flow while manometers (19, 21 and 22) measure the pressures recorded by
the computer system (18)

term in the model equations and further in the numerical simulation. The production module
consists of a fluid collection vessel (14) to collect the sample and a back pressure valve (17)
to control back pressure. Initially, we had visual cell installed in the experimental set-up
for the Bentheimer core. However, the pressure drop was very high across the visual cell,
which jeopardized an accuratemeasurement of the pressure drop across themeasuring points.
For this reason, the visual cell was disconnected. Moreover, the bubble sizes measured in
external visual cells may not be representative of in situ texture. An overview of the problems
encountered when using a visual cell is described by Ettinger and Radke (1992), Ransohoff
and Radke (1988) and Friedmann et al. (1991). The back pressure valve (17) is regulated by
high-pressure nitrogen from a cylinder. The outlet of the sandpack/coreholder is connected to
nylon tubingwith the same internal diameter as the injection tubing, but has a length of 50 cm.
There is a flow distributor at the bottom and the top between the injection tube and sandpack
to avoid spurious entrance and production effects. At the bottom of the sandpack/coreholder,
the flow distributor contains a steel and nylon filter of mesh size 10/cm and a thickness of
0.12 mm to avoid sand spillage. By switching valves (6), (9) and (20), it is possible to change
the direction of the flow in the core.

2.1.1 Porous Media and Solutions

Two different porous media are used in the experiments, viz., an unconsolidated sand of
mean size of approximately one mm or Bentheimer cores. The pore size distribution for the
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unconsolidated sand as shown in Fig. 3 is obtained from image analysis, using an optical
microscope. Prior to its use, the sand is treated with a potassium dichromate–sulfuric acid
solution to make it completely water-wet. It is kept in the acid for one day and rinsed with
tap water until all the acid is removed according to the procedure mentioned by Furniss et al.
(1989). Subsequently, the sand is dried and poured, using the procedure of the seven sieves
by Wygal (1963), in an acrylic transparent vertical tube to which we refer as the sandpack.
The sandpack has an internal diameter of 0.039 m and a length of 0.15 m. The porosity of
the unconsolidated sandpack is considered to be 0.38 (Panda and Lake 1994). In case of
Bentheimer, the core for the experiment is cut from larger samples and not pretreated prior
to its usage. The core is 17 cm in height and 4 cm in diameter and fitted in an aluminum
core holder. The porosity of the Bentheimer core is measured to be 0.21 by comparing
its weight with and without water, avoiding the presence of air bubbles. The permeability
of the sandpack and the core is 1860 ± 100 Darcy and for Bentheimer is 3 ± 0.5 Darcy,
respectively, measured by single-phase (water) test prior to foam flow experiments. We used
39.1 w/w % BIO-TERGE® AS-40 sodium C14−16 alpha olefin sulfonate (AOS) to prepare
0.3 w/w % AOS solution in 0.5 M brine and an AOS solution of 0.3 w/w% in acidic (pH =
3) water. We diluted both solutions for the foam experiments to prepare a 0.075 w/w % AOS
solution in 0.5 M brine for the unconsolidated sandpack and 0.0375 w/w % AOS in acidic
water with dissolved HCl (pH = 3) for Bentheimer. In addition, we measured the surface
tension of the given surfactant in DD water in the presence of air with the du Nouy ring
tensiometer. The critical micelle concentration of the surfactant decreases with the increase
in the salt concentration. In 0.5 M brine, i.e., 30 g of NaCl in 1000 ml water, the critical
micelle concentration of AOS is 4×10−3 wt% as mentioned by Simjoo et al. (2013). From
our surface tension study as shown in Fig. 6, in DDwater the critical micelle concentration of
AOS is 0.0375 w/w% (1.19 mmol/l). Therefore, the concentrations used for the experiments
are 20 × CMC for the unconsolidated sandpack and CMC for Bentheimer.

2.1.2 Measurement of Pressure, Mass Flow and Temperature

The manometers (19, 21 and 22) and mass balances (15 and 16) are connected to a data
acquisition system and a computer (18) to record the pressures and mass flow versus time.
The mass flow in (13) and out (14) of the core are determined by weighing the storage
vessels on the mass balances (15) and (16), respectively. Figure 2 shows the position of the
measurement of the pressure difference across the Bentheimer core and the unconsolidated
sandpack. There are four pressure measurement points, viz, at the outlet, inlet and two (for
a pressure difference meter) in the middle at a distance of 0.06 m apart for the sandpack and
0.09m apart for theBentheimer core. The pressure differencemanometer ranges between 0–3
barA (19) with the precision±30 mbarA. The pressure difference manometers are calibrated
with a pressure calibrator 2095PC (range 1–10 bar). The injection (21) and production side
(22) manometers measure absolute pressures in the range 0–65 barA and have a precision of
±100 mbarA. We did not measure the temperature in the sandpack experiments. In case of
the Bentheimer core experiments, a thermocouple (25) is used to measure the temperature at
the inlet of the core.

2.2 Flow Experiments

We conducted ten foam flow experiments of which we report two here, i.e., with the uncon-
solidated sandpack and the Bentheimer sandstone core. As the goal of this paper is to show
the procedure of extracting parameters for the bubble generation-coalescence function, we
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Fig. 2 Schematic drawing of the
sandpack and Bentheimer core.
The foam flow was bottom to top
for the unconsolidated sandpack
and top to bottom for the
Bentheimer core

Fig. 3 Particle size distribution
for the unconsolidated sand. 15%
of the sample particles are below
1 mm, 10% are above 1.5mm.
Majority of the sample particles
are between 1 and 1.5mm
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chose only these two experiments for reasons of concise presentation. For the unconsolidated
sandpack, the flow is from bottom to top while for the Bentheimer core the flow is from top
to the bottom. The foam experiments with unconsolidated sandpack are started at t = 0 s
by flushing surfactant solution with concentrations of 0.075 w/w % AOS (20 × CMC) at a
rate of 1.26 × 10−5 m/s. After one PV of AOS, we achieved a single-phase steady pressure
drop of 35,500 Pa/m between the measurement points. At t = 3309 s from the starting of
the experiment, the back pressure valve is opened causing the backpressure to drop from
8.51 to 1.30 barA (absolute pressure). The injection pressure drops from 8.37 to 2.22 barA.
At t = 3346 s (37 s after the release of the back pressure), N2 gas is injected at a rate of
1.20×10−5 m/s in the already flowing AOS solution at the T-junction between valve (3) and
(4), 30 cm upstream of the sandpack inlet. As the foam develops inside the sandpack, the
pressure at the injection point increases leading to compression of gas affecting the ratio of
gas to total flow, i.e., foam quality. We calculated this foamed gas velocity or foam velocity
(u f ) by dividing the injection foamed gas velocity with pressure ratio at the injection side.
For the experiment with the Bentheimer core, we maintained 4 barA backpressure through-
out the experiment. Before the experiment is started, we flushed CO2 for 5min followed by
100 ml of water with HCl (pH 3) to remove any trapped gas. The measurements for the
foam experiment is started at t = 0 s by flushing a surfactant solution of 0.0375 w/w %
concentration (≈ CMC) at a rate of 3.75 × 10−5 m/s. We waited to achieve a steady liquid
pressure drop of 15,300 Pa/m between measuring points. At t = 3610 s (after 94 ml of AOS
solution passed into the core), N2 gas is injected in the already flowing AOS solution at a flow
velocity of 7.8 × 10−5 m/s. The inlet and outlet pressures at the time of gas injection were
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Table 1 Summary of the foam flow experiments for Sandpack and Bentheimer

Porous
media

Solvent AOS
w/w %

BP
barA

U atm
inj

× 10−5 m/s

U f

× 10−5 m/s

Uw

× 10−5 m/s
�P
×105 Pa/m

Sandpack 3 w/w%
Brine

0.075 Atm. 1.20 1.01 1.25 22.0 ± 0.07

Bentheimer Acidic
(pH 3)

0.0375 4 7.88 1.97 3.76 23.0 ± 0.2

BP Back pressure, Atm. atmospheric pressure,U atm
inj gas velocity at the injection for an atmospheric pressure,

U f foam velocity

4.22 and 4.18 barA, respectively. After injection of approximately 600 ml of AOS solution
with a corresponding amount of gas, the measurements were stopped by closing the gas and
liquid flow. The measured temperature fluctuated between 16 and 17 ◦C. Table 1 summarizes
the experiments mentioned above.

2.3 Adsorption Test

For the adsorption test, we maintained conditions identical to the Bentheimer foam exper-
iment, i.e., 0.0375 w/w % AOS in DD water with pH 3 and the same liquid velocity
(3.6 × 10−5 m/s). Before the adsorption test, the permeability of Bentheimer to double dis-
tilled water was determined for the flow rates 50–250 ml/h. The calculated permeability was
2.10 Darcy. Potassium iodide (KI), 7 gm, was used as a tracer. From the start of surfactant
injection, effluents were collected at the outlet in plastic tubes by fraction collector at various
intervals. The effluents were analyzed for total organic carbon (TOC), using a Dhormann
80 apparatus. The potessium iodide tracer was analyzed by the use of ultraviolet–visible
Spectrophotometer UV Mini 1240 (Shimadzu).

2.4 Experimental Results

Themain result of the foamflow experiments is the pressure drop across the twomeasurement
points in the core. As gravity forces are found negligible (see Sect. 3.6); the increase in
pressure drop is due to viscous forces (foam viscosity). Figure 4 shows pressure drop profile
obtained from the experiment (triangles) with an unconsolidated sandpack of 1860 ± 100
Darcy for 10,000 s after the injection gas and AOS solution. The release of the back pressure
results in a high flow rate, which subsequently causes a high increase in the pressure drop.
We noted the change in the single-phase pressure drop at the injection of gas and consider it
as the beginning of the foam generation. Foam generation, represented by the pressure drop,
is accelerated due to the already present gas saturation in the sandpack. This is well explained
in the models of Ashoori et al. (2011), where an initial gas saturation leads to an accelerating
generation of foam. Foam reaches a steady pressure drop value of 22.0 × 105 Pa/m after
injection of 1.3 pore volume at a foam velocity 1.01 × 10−5 m/s. The fluctuation in the
steady pressure drop is large (1.0 × 104 Pa/m) due to gas compression at the inlet of the
sandpack leading to change in foam quality. Figure 5 shows results from the experiment
(triangles) and from the simulation by COMSOL (2013) (line, discussed in Sect. 3.9) in case
of the Bentheimer core for a 0.0375 w/w % AOS solution. In the experiment, the effect of
foam generation is observed after 10 pore volumes of gas and water injection. The delay in
the pressure drop can be due to two reasons: (1) the low surfactant concentration with a low
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Fig. 4 Experimental pressure
drop profile during foam flow in a
surfactant-saturated sandpack.
Immediate foam formation, as
shown in the experimental curve,
is due to the high AOS
concentration (20 × CMC)
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Fig. 5 Experimental and
simulated pressure drop profile
during foam flow in a
surfactant-saturated Bentheimer
core. The delayed foam formation
as shown by the experimental
curve is due to the use of low
AOS concentration (≈ CMC)
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gas to liquid ratio (0.33), which leads to weak bubbles/lamallae inside the porous medium,
and (2) adsorption of the surfactant at the initial stages of the formation of foam.

We measured the surface tension (N/m) corresponding to the various values of the sur-
factant concentration (mmol/l) as shown in Fig. 6. Figure 7 shows the ratio of produced
concentration to injected concentration vs the injected pore volume in the Bentheimer core
during the adsorption test. The profile with plus sign shows the KI transport. The surfactant
transport in the Bentheimer for given conditions (pH 3, 0.0375 w/w% AOS in double dis-
tilled water with pH 3) shows time-dependent adsorption. As observed in the literature, for
example, by Kuhlman et al. (1992), AOS does not show a Langmuir isotherm and a certain
delay in its propagation through the Bentheimer is observed.

3 Modeling

3.1 Physical Model

Weconsider isothermal foamflowof two phases as proposed byBuckley and Leverett (1942),
i.e., a water AOS solution and a high viscosity gaseous phase (foam). We assume that the
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Fig. 6 Surfactant tension
surfactant concentration relation:
The CMC for AOS in case of DD
water was found at 1.2 mmol/l
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Fig. 7 Adsorption curve: The
porous medium is not saturated
with the surfactant, even after 14
PV of injection of 0.0375 w/w %
AOS
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flow of the foam phase and water phase obeys Darcy’s law for multiphase flow. The total
superficial velocity ut , i.e., the sum of the superficial velocities of water and foam phase and
the corresponding experimental pressure drops, �Pw and �Pf , is expressed as follows,

ut = uw + u f (4)

ut = −kkrw(�Pw − ρwg)

μw

− kkr f (�Pf − ρ f g)

μ f
. (5)

We drop the subindexes w and f in the pressure drop �P (the pressure difference divided
by the distance between measuring points), thus ignoring capillary pressure. The foam phase
consists of the bubbles bounded by AOS soap films. The resistance to bubble flow in a
cylindrical tube can be considered as an apparent viscosity of the foam phase, often expressed
as an extrapolation of the Bretherton equation (Bretherton 1961) by Hirasaki and Lawson
(1985) and Kovscek et al. (1995), i.e.,

μ f = μg + α
n f

vcf
(6)

where μg is the gas viscosity, n f is the bubble density and α is a fitting parameter for the
surfactant effect. Bretherton (1961) used c = 1/3 for the exponent. The local interstitial
foam velocity v f is equal to u f /(ϕX f Sg), where X f is the flowing foam fraction and Sg
is the total saturation of foam. The flowing foam saturation S f is related to the total foam
saturation by S f = X f Sg . The superficial foam velocity depends on the pressure inside the
core, i.e., u f = uatminj patm/pinj, where uatminj is a foamed gas velocity at the injection point
for atmospheric pressure, patm. The injection pressure at the inlet of the porous medium is
denoted by pinj. The relative water krw and unfoamed gas krg permeabilities are given by
Brooks and Corey (1966),

krw = k′
rwSwe

2+3λ
λ , krg = k′

rg(1 − Swe)
2(1 − Swe

2+λ
λ ), (7)

123



Foam Flow Experiments. I. Estimation of the Bubble. . . 63

where λ is pore size distribution index and k′
rw (=1) is the permeability to water at the

irreducible saturation of gas (Sgr ), which we take equal to zero. The permeability to gas at an
irreducible water saturation Swc is k′

rg (=1). Moreover, Swe = (Sw − Swc)/(1 − Swc) is the
effective water saturation, where Sw is the water saturation. We assume a slightly different
relationship than proposed by Kovscek et al. (1995), where the foam relative permeability
is a fraction of gas relative permeability connected by the flowing fraction of foam, i.e.,
kr f = X f krg .

3.2 Model Equations

We describe foam flow through porous media with four equations: a mass balance equation
for the water-foamed gas solution, a pressure equation, a bubble concentration equation and
a surfactant transport–adsorption equation. The flow of water with dissolved AOS in the
vertical x-direction in the presence of foam is described as a transport equation, viz.(Lake
1989),

ϕ∂t (ρw Sw) − ∂x

(
ρw

kkrw
μw

(∂x p − ρw g)

)
= ∂x

(
Dcapρw∂x Sw

)
, (8)

where ρw is the water density, kw is the water permeability, μw is the water viscosity,
Dcap is the capillary diffusion coefficient and p is the pressure. We disregard the saturation
dependence of the capillary diffusion coefficient. In order to derive the pressure equation,
we assume that the water density ρw is pressure dependent. Dividing the equation by ρw and
rearranging the terms, we obtain

ϕ∂t Sw + ϕSw∂t ln ρw − ∂x

(
kkrw
μw

(∂x p − ρw g)

)

− (∂x ln ρw)

(
kkrw
μw

(∂x p − ρw g)

)
= ∂x

(
Dcap∂x Sw

)
, (9)

where we disregard the term involving differentiation toward ρw in the diffusion term, i.e.,
(∂xρw)

(
Dcap∂x Sw

)
. For the mass balance of foam, we take into account trapped gas. We

consider that foam flow through porous media consists of three flow regimes, as described
by Ettinger and Radke (1992), i.e., 1. moving liquid 2. foam as a bubble train and 3. trapped
bubble train. Therefore, for the given physical model, the trapped foam corresponds to the
trapped bubbles and the flowing foam corresponds to the flowing bubbles. The number of
trapped bubbles is assumed to be equal to the number of flowing bubbles as in Kovscek et al.
(1995); i.e., S f n f + Stnt becomes Sgn f , where St is trapped gas saturation, n f and nt are the
number of flowing and trapped bubbles per distance of the porous medium, respectively. The
relative permeability of the trapped gas is zero. Therefore, the overall mass balance equation
for the foamed gas (foam) reads

ϕ∂t (ρ f (p)Sg) − ∂x (ρ f (p)
kkr f
μ f

(∂x p − ρ f (p) g)) = ∂x
(
ρ f (p)Dcap∂x Sg

)
, (10)

where ρ f (p) is foamed gas density, which depends on the pressure at which the foam is
flowing through the porous medium. After expanding the differentiation and dividing by
ρ f (p) we obtain

ϕ∂t Sg + ϕSg∂t ln ρ f (p) − ∂x

(
kk f

μ f
(∂x p − ρ f (p) g)

)

−∂x
(
ln ρ f (p)

) (
kkr f
μ f

(∂x p − ρ f (p) g)

)
= ∂x

(
Dcap∂x Sg

)
, (11)
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where we disregard the term,
(
∂xρ f

) (
Dcap∂x Sg

)
involving differentiation toward ρ f in the

diffusion term. We introduce cw and c f as the compressibilities for water and foamed gas,
respectively. Thus, the term ∂t ln ρ f (p) = c f ∂t p and the term ∂x ln ρ f (p) = c f ∂x p. Addition
of Eqs. (9) and (11) leads to the pressure equation, i.e.,

ϕ (Swcw+Sgc f )∂t p − ∂x

((
kkrw
μw

+ kkr f
μ f

)
∂x p

)
+∂x

(
kkr f
μ f

ρ f (p) g+ kkrw
μw

ρw(p) g)

)

− cw∂x (p)

(
kkrw
μw

(∂x p − ρw g)

)
− c f ∂x (p)

(
kkr f
μ f

(∂x p − ρ f (p) g)

)
= 0, (12)

where the capillary diffusion terms cancel.
The flowing bubble density equation considers accumulation of bubbles in the foam phase

convected with the flow. It consists of an accumulation term, a convection term, a kinetic
bubble generation-coalescence function to be estimated from the experiment and diffusion
terms. The bubble density equation is given by

ϕ∂t (Sgn f ) − ∂x

(
n f

kkr f
μ f

(∂x p − ρ f (p) g)

)
− ϕ Sg R(n f )

= X f (n)[∂x
(
ϕSgDn f ∂xn f

) + ∂x
(
Dcapn f ∂x Sg

)], (13)

where R(n f ) is a source term, which will be estimated by a procedure that uses the Hirasaki–
Lawson equation. Dn f and Dcap are the bubble diffusion and capillary diffusion terms, where
diffusion of flowing fraction of foam bubbles is considered.

The model equations for the convection, adsorption and diffusion model (CDA) of the
surfactant transport are taken from Trogus et al. (1977) as

∂tC + uw

ϕ
∂xC + As

ϕ
∂tCs = Ds

∂2C

∂x2
(14)

∂tCs = Ka(Qs − Cs)C − KdCs, (15)

whereC is the surfactant concentration in the water,Cs is the adsorbed surface concentration,
As is the rock interstitial area per unit volume (total volume), Qs is the total adsorption
capacity of the adsorbent, Ka is the rate of adsorption, Kd is the rate of desorption and Ds

is the surfactant diffusion coefficient. We assume that the surfactant concentration in the
lamellae and the injected water is the same.

3.3 Rough Estimation of Bubble Density, n f , and the Source Term, R
(
n f

)

For the estimation of the bubble density, we follow in essence the bubble population approach
adopted by Kovscek et al. (1995) for multiphase flow.

Darcy’s law for the foam velocity during multiphase flow reads

u f = −
(
kkr f
μ f

(∂x p − ρ f (p) g)

)
= −

(
kkr f v

1/3
f

α n f
(∂x p − ρ f (p) g)

)
, (16)

where we substituted the foam viscosity from Eq. 6. Hence, we obtain

∂x p = −α n f

v
1/3
f

u f

kkr f
, (17)

where we disregarded the gravity effect, ρ f (p) g.
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Integration of Eq. (17) between the measurement points, xL and xR , leads to an expression
for the pressure drop, i.e., ∫ xR

xL
∂x p dx = −

∫ xR

xL

α n f u f

v
1/3
f kkr f

dx . (18)

Here xL and xR denote the left and right position of the pressure difference measurement
points, respectively. Initiallywe consider only single phase flow.As the saturation andflowing
fraction of foam is unknown, we assume that foaming gas is the only phase in the porous
medium and all the foamed gas is flowing. Therefore, the foam relative permeability is
assumed to be equivalent to the bulk permeability, KKr f = k. As the water saturation is
assumed very low, the local interstitial velocity is equal to the interstitial velocity, i.e., v f =
u f

ϕ Sg
≈ u f

ϕ
. We assume that the quantities on the right side of Eq. 18 can be approximated

by their average value between the two measurement points, i.e.,

p (xR) − p (xL)

xR − xL
= −α n f,av u f,av

v
1/3
f,av kav

.

We get the bubble density (ignoring the negative sign for flow) in terms of experimental
pressure drop as

n f,av(t) = kav v
1/3
f,av

α u f,av

p (xL) − p (xR)

xR − xL
. (19)

As the saturations and flowing fraction of foam are unknown, we determine part of the bubble
generation-coalescence function, i.e., the source term R(n f ) in Eq. 13 from the experimental
pressure drop in terms of the estimated bubble density as

R(n f,av) ≈ dn f,av

dt
. (20)

Figures 8 and 9 show bubble density (n f,av) versus the derivative of bubble density over time
(dnav/dt) in case of an unconsolidated sandpack and Bentheimer. The derivative dn f,av/dt
is calculated as the slope of the line that joins fifty n f,av(t) values to the corresponding
t = 50 s with the LINEST function from Microsoft Excel. The interval 50 s was considered
optimal in avoiding spurious scattering (for short times) and loosing details (for long times). A
fitted linear regression of dn f,av/dt versus n f,av is used for fitting unconsolidated sandpack
experiment while for fitting Bentheimer experiments, exponential form of dn f,av/dt versus
n was used. The fitted curves are shown in the figures as lines.

Fig. 8 Bubble density (n f )
versus first estimate of the source
term R(n f ): the rate of change of
bubble density over time
(dn f,av/dt := dndt) for the
unconsolidated sandpack. It is
assumed that foamed gas is the
only phase in porous medium and
all foamed gas is flowing, i.e.,
Sg = 1 and X f = 1
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Fig. 9 Bubble density (n f ) vs
first estimate of the source term
R(n f ): the rate of change of
bubble density over time
(dn f,av/dt := dndt) for
Bentheimer core. It is assumed
that foamed gas is the only phase
in porous medium and all foamed
gas is flowing, i.e., Sg = 1 and
X f = 1
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3.4 Estimation of Viscosity Coefficient α from Surfactant Concentration

The apparent foam viscosity due to the shape ( rcR ) of the bubble in a cylindrical tube is given
by Hirasaki and Lawson (1985) as

μ
shape
app = 0.85

(μwnL R)( rc
R

)
(
3μwU

σ

)−1/3 [(rc
R

)2 + 1

]
, (21)

where μw is the water viscosity, R is the capillary radius, rc is the radius of curvature of
lamella and σ is the surface tension between surfactant water and gas. This equation can be
considered similar to Eq. 6 of viscosity as

μ
shape
app = αshape n f

v
1/3
f

, (22)

where nL = n f , i.e., the lamellae density is equal to the bubble density andU = v f , i.e., the
gas velocity in the capillary tube from Eq. 21 is equal to the local interstitial foam velocity
in Eq. 6. The resistance to flow due to the shape of the bubble can be accounted for by the
parameter αshape as

αshape = 0.85
μwR( rc

R

)
(
3μw

σ

)−1/3 [(rc
R

)2 + 1

]
. (23)

We assume that the radius of curvature of the lamella is equal to the capillary radius, i.e.,
rc = R. Therefore, Eq. 23 simplifies as,

αshape = 1.18R μ2/3
w σ 1/3. (24)

From Hirasaki and Lawson (1985), the resistance of surface tension gradient to bubble flow
in the capillary tube is 10 times higher than the resistance due to the shape of the bubble.
Therefore, the total resistance can be considered as a sum given by,

α = αshape + 10αshape. (25)

Therefore, α varies when the surfactant concentration in the porous medium varies at low
concentration (around CMC). The viscosity coefficient α can be assumed constant for the
case where the adsorption condition is satisfied; i.e., the porous medium is saturated with
surfactant, which happens at high concentration.
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3.5 Boundary Conditions

Here we define boundary conditions based on experiments to be used in the simulations.

Bubble density: The bubble density boundary condition at the injection point x = 0 is given
by

n f (x = 0, t) = ninit + (ninj − ninit) r(t), (26)

where ninit is the initial bubble density and ninj is the bubble density at the point where
the bubble–water mixture enters in the core. The bubble density is estimated from Eq. 3 by
replacing �p f − ρ f g with �pw − ρwg, assuming that the initial pressure drop observed
for the two-phase flow is equal to the pressure drop obtained for single-phase water flow.
The ramp function r(t), used to avoid discontinuous initial conditions, is zero for t ≤ 0
and one for t ≥ 1. It increases linearly with time in the transition region. For simplicity, we
considered ninit = ninj in all the cases of our simulations. At the production point x = L, the
derivative of the bubble density is given by

∂xn f (x = L, t) = 0. (27)

Aqueous phase saturation: In the literature, the flowing fraction of foamed gas during tran-
sient flow is considered constant, e.g., by Falls et al. (1988), Zitha et al. (2006) or varying,
e.g., by Apaydin and Kovscek (2001) and Tang and Kovscek (2006). In order to estimate the
aqueous phase saturation, we consider the flowing fraction of foam to be dependent on the
bubble density with the relation X f = (

n f
ninj

)−0.4, modified from Tang and Kovscek (2006)
with the injection bubble density, ninj to make the flowing fraction dimensionless. The bubble
density at the injection side is given by n f and is equal to n f,avg estimated in the previous
Sect. 3.3. At the injection side x = 0, the water phase saturation can be inferred from the
foam quality η, i.e.,

η = u f

uw + u f
. (28)

The water saturation boundary condition at the injection side can be derived by eliminating
the pressure drop from Darcy’s law

uw = −kkrw
μw

(∇ p ± ρwg) ,

u f = − kkr f
α n f

(∇ p ± ρ f g
)( u f

ϕSgX f

)−1/3

, (29)

where the minus sign in ± is for the flow from the top to the bottom and the plus sign is
for the flow from the bottom to the top. The foam injection velocity is given by the mass
injection velocity of nitrogen multiplied by the density and is equal to the injection velocity
uatminj at atmospheric pressure in m/s. Eliminating the pressure drop from the water equation
in Eq. 29 with ∇ p = μwuw/ (kkrw) ± ρwg, we obtain

uatminj
patm
pinj

= −kkr f
αn f

(
ϕSg X f

uatminj
patm
pinj

)1/3 (
μwuw

kkrw
± (

ρw − ρ f
)
g

)
, (30)

where pinj is the pressure at the injection point. This equation is solved to find the saturation
at the injection point. Figure 10 shows the resultant water saturation sbound as a function of
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Fig. 10 Sbound estimated from
the bubble density for the
sandpack (prism) and the
Bentheimer case (triangle)
considering constant foam
quality. The flowing fraction of
foam is considered as a function
of the estimated bubble density
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bubble density for both cases of sandpack and Bentheimer. The water saturation varies from
the initial (Sinit) to the final water saturation (Sbound) and has Dirichet boundary condition
Sinit + (Sbound − Sinit) r(t), where the ramp function is initially used to avoid a discontinuous
saturation at the injection side. The simulation is improved by assuming a smooth initial
saturation, concentration and bubble density curve (tangent hyperbolic function). A nonzero
water compressibility cw is required to avoid incompressible flow at the initial condition
because Sw = 1 and Sg = 0. At the production point, x = L we specify the derivative of
the saturation to be zero (Danckwerts 1953), i.e., ∂x Sw = 0. Once the water saturation and
flowing fraction of foam are known, the other saturations are calculated accordingly, i.e.,
Sg = 1 − Sw and S f = X f Sg .

Surfactant concentration: We applied Dirichet boundary condition at the inlet with the pre-
scribed value of C asCinit+(Cbound−Cinit)r(t)whereCinit is initial surfactant concentration
and Cbound is produced surfactant concentration. C = Cinit at t = 0 (at the time of gas injec-
tion) for all x , C = Cinit at x = 0 for all t, C = Cbound at x = L for all t. During the
foam experiment with Bentheimer, 3 PV of surfactant solution was injected before gas co-
injection. From the adsorption experiment, the adsorbed surface concentration Cs after 3 PV
of surfactant is 3 × 10−6 mmol/m2 at t = 0 for all x .

3.6 Numerical Solution

We consider here the Bentheimer experiment with low concentration (≈ CMC) with varying
α. The viscosity coefficient α is calculated from Eq. 25 with changing surfactant concen-
tration, which itself is estimated from the adsorption test. We used the four 1-D equations
from Sect. 3.2 in their weak form (Haberman 2004) along coordinate x , i.e., the water satu-
ration equation (Eq. 8), the pressure equation (Eq. 12), the bubble density equation (Eq. 13)
and surfactant transport–adsorption equation (Eq. 15). We implemented the model in the
multiphysics module of the commercial finite element software, COMSOL version 5.0. We
consider a 1-D geometry, consisting of a single domain with a length of 17 cm for the Ben-
theimer core. The quadratic Lagrangian elements are used with an element size of 0.00017
m for the Bentheimer core. A time-dependent solver (generalized alpha) is used with a linear
predictor and an amplification for high frequency of 0.75 (Jansen et al. 2000). In addition, we
split the accumulation term of the bubble density and saturation product Eq. (19) in COMSOL
into a sum containing a saturation derivative and a bubble density derivative. The termination
technique was based on a prescribed tolerance, i.e., sum of absolute error (for each dependent
variable) and relative error with maximum number of iterations 5. The convergence criterion
for the solution was to arrive at a solution, which is within the specified tolerance. The step
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is accepted if the solver’s estimate of the (local) absolute error in the solution committed
during a time step is smaller than the sum of absolute and relative error.

We obtain the velocity, pressure, saturation and surfactant concentration at each node
point. The foam propagation is simulated for a period of t = 10, 000 s with output after
each 100s. Fixed values are used for the gas constant (8.314 J/mole/K), the acceleration due
to gravity (9.81 m/s2), the water density (1000 kg/m3), the temperature (293 K), the molar
weight of nitrogen (0.028 kg/mole). The gas compressibility c f for ideal gas is 1/p. The
water compressibility is chosen as 4.58×10−10 Pa−1. The density of nitrogen at atmospheric
pressure is 1.15 kg/m3. The gravity term (ρ f (p) g)avL is about 0.69 Pa, which is negligible
with respect to the measured pressure difference.We assumed the initial value of λ to be 5 for
Bentheimer corewith complexmineral composition being slightly larger for themediumwith
a narrow range of pore sizes (Brooks and Corey 1966). The capillary radius is calculated

from capillary theory, R =
√

8k
ϕ
. The value of αshape in Eq. (24) is obtained from the

surface tension corresponding to the surfactant concentration.Maximum adsorption capacity,
Qs (mmol/m2), is equal to Qeqd/(SsapMism), where Qeqd is equilibrium adsorption density
(0.45 mg/g), specific surface area of pores, Ssap is 10 m2/g, and injected surfactant molecular
weight, Mism is 315 mg/mmol. Weight of the core is taken as Wc (200 g) and pv is the pore
volume. The rock interstitial area, As , is calculated by SsapWc/(pv) as 20× 106 m2/m3. We
fitted the adsorption curve of the single-phase flow simulation with the adsorption parameters
ka and kd . The parameters used for the simulation are given in Table 2.

3.7 Numerical Results

Themain output of the foam flow simulation is the pressure drop, water saturation and bubble
density. As our primary goal in this work was to relate the bubble generation function to the
experimental pressure drop, a detailed convergence analysis as in Ames (1977) for such a
nonlinear problem is considered outside the scope of current paper. In case of the Bentheimer
core with low concentration, the surfactant concentration alongwith the surfactant adsorption
is compared with the experimental results.

The effect of spatial grid and temporal density on the simulated pressure drop profile is
measured. The solution is “mesh convergent” as mesh refinement from 0.00017 to 0.00005
m did not significantly change pressure drop profile. Similarly, the change in prescribed
tolerance, i.e., temporal density from 1× 10−8 to 1× 10−6 did not change the pressure drop
profile.We conducted numerical experiments to study the effect of perturbation of parameters
(here taken as constant), i.e., capillary diffusion, Dcap and bubble diffusion, Dnf on the
pressure drop profile. Initially, we selected Dcap, 1 × 10−8 m2/s and Dnf , 1 × 10−7 m2/s.
An optimization routine is followed in COMSOL for different values of bubble diffusion and
capillary diffusion for a minimization of the difference between experimental and predicted
pressure drop. Thus, we arrived at values given in Table 2, which give a simulation result
closer to the experimental result. Figures 11 and 12 give a sense of the impact of the possible
uncertainties in the pressure profile for the given values of bubble diffusion and capillary
diffusion, respectively.

Saturation profile: Figure 13 shows the saturation profile for the simulation for foam flow
across the Bentheimer core. Change in the initial condition from a step function to a tanh has
a minor but noticeable effect on the results. The curves show the saturation across the length
of the core at the indicated times in seconds and in pore volumes (PV) in brackets. The 100s
curve shows that the saturation at the entrance of the Bentheimer is ≈ 0.62. As time passes,
i.e., 200 s after co-injection of the surfactant solution and gas, the water saturation shows
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Table 2 Parameters used for implementation of the model in the commercial software

Notation Units Description Bentheimer

Fluid properties

α (10−7) Ns2/3/m4/3 Estimated viscosity coefficient 4.73–4.39

μw (10−5) N s/m2 Water viscosity 100

μg (10−5) N s/m2 Gas viscosity 8.5

CAOS () mmol/l Surfactant conc. 1.19

MAOS g/mmol Molecular weight of AOS 0.315

CCMC () mmol/l Critical micelle concentration 1.19

pH (−) pH of the solution 3.30

uatminj (10−5) m/s Injected Gas velocity 7.88

u f (10−5) m/s Foam velocity 1.97

uw (10−5) m/s Injected Liquid velocity 3.76

η − Foam Quality (u f /(uw + u f )) 0.33

Dcap (10−7) m2/s Capillary diffusion coefficient 9.30

Dn f (10−5) m2/s Bubble diffusion 2.20

ninj /m Injection bubbles density 231.00

ninit /m Initial bubbles density 231.00

ninf /m Maximum bubbles density 47180.00

Ds (10−7) m2/s Surfactant diffusion 2.00

Cs (10−5) mmol/m2 Initial Surfactant adsorbed 0.30

Sinit Initial water saturation 0.99

Porous media properties

ϕ − Porosity 0.21

λ − Pore size distribution index 5.00

k (10−12) m2 Permeability 3.00

L m Length of the core 0.17

R (10−5) m Capillary radius 1.10

As (106) m2/m3 Rock interstitial area 20.00

pexit barA Pressure at the exit 4.10

Qs (10−5) m3/gs Maximum adsorption capacity 14.28

ka (10−5) mg/gs Surface adsorption parameter 5.00

kd (10−5) /s Surface desorption parameter 90.00

typical front observed in Buckley and Leverett (1942). After 5000s, the saturation increases,
leading to a decrease in the pressure drop. At the end of the simulation (10,000s), the water
saturation is still a decreasing function of the distance from the injection point. Figure 14
shows the flowing fraction of foam. As the time passes, the flowing fraction decreases. The
flowing fraction of foam is varying during the transient state and constant at steady state. At
the steady state, the flowing fraction is ≈ 0.12, which is similar to the values found by Tang
and Kovscek (2006).

123



Foam Flow Experiments. I. Estimation of the Bubble. . . 71

Fig. 11 Variation in bubble
diffusion (Dnf ). Capillary
diffusion (Dcap) is constant, e.g.,
9.3 × 10−7 m2/s
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Fig. 12 Variation in capillary
diffusion (Dcap). Bubble
diffusion (Dnf ) is constant, e.g.,
2.2 × 10−5 m2/s

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Pr
es

su
re

 d
ro

p 
x 

10
6

(P
a/

m
)

D  =9.3 x 10

cap

D  =9.6 x 10
cap

Experiment

D =9.3 x 10
-6

cap D =9.3 x 10
-5

cap

-7

-7

Fig. 13 Numerical saturation
profile in the x-direction for
Bentheimer case
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Bubble density profile: Figure 15 shows the simulated bubble density profile along with the
corresponding surfactant concentration profile for Bentheimer. As time passes, i.e., 100 s to
1000s, the bubble density increases from231/m at the inlet to amaximumvalue of 47, 810/m
at the exit of the Bentheimer core. The bubble density continues to increase even thoughwater
saturation increases after 5000s as shown in Fig. 13. The variation in surfactant concentration
affects the bubble density via varying viscosity coefficient α in Eq. 2. The bubble density
increase is directly proportional to the surfactant concentration increase in the core. The
surfactant concentration (dotted curve) propagates as a moving front (100s, 200–1000s).
At the end of the simulation, the concentration is not equal everywhere but shows a slight
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Fig. 14 Flowing fraction of
foam in the x-direction for
Bentheimer case
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Fig. 15 Numerical bubble density and surfactant concentration plot in the x-direction for Bentheimer. The
dashed curve is the surfactant concentration, and the drawn curve is the bubble density. There is a nonzero
gradient of the bubble density in the domain between the measurement points (4.5 and 13.5 cm), even after
long times. This shows the need to use an average bubble density (n f,av) in Eq. 19

gradient, i.e., Cproduced/Cinjected = 0.95, where Cproduced is the surfactant concentration in
the produced solution, while Cinjected is the injected surfactant concentration. Corresponding
bubble density is not equal everywhere affecting the calculation of the source term from the
experimental pressure drop between the measurement points.

3.8 Terms Contributing to the Pressure Drop

Here we determine the relative importance of the terms in the bubble density equation. The
bubble density equation Eq. 13 has been modified, replacing the potential gradient terms by
the Darcy velocity of the foam, i.e.,

ϕn f ∂t Sg + ϕSg∂t n f − ∂x
(
n f u f

)
−X f [∂x

(
ϕSgDn f ∂xn f

) + ∂x
(
Dcapn f ∂x Sg

)]
= ϕ Sg R(n f ). (31)
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Fig. 16 Terms contributing to the bubble generation-coalescence function (line with pyramid) in flow simula-
tion for the Bentheimer due to (1) accumulation terms, (a) gas saturation change over time: ϕn f ∂t Sg (cross),
(b) bubble density change over time: ϕSg∂t n f (small square), (2) convection-diffusion terms (plus sign) from
Eq. 31. Unlike the first estimate of R(n f ) in Fig. 9, here we consider two-phase flow (Fig. 13) and flowing
foam fraction (Fig. 14)

We calculated the terms from Eq. 31 in case of Bentheimer as shown in Fig. 16 averaged over
the domain between themeasurement points. The gas saturation change over time (ϕ n f ∂t Sg)
hardly contributes to the generation-coalescence function throughout the simulation. During
transient flow (from 0 till 4200s, ≈ 12 PV), the source term, R(n f ), is balanced by the
bubble density change (ϕ Sg ∂t n f ) and the convection-diffusion of bubbles. Our initial
estimate, R(n f ) ≈ ∂t n f (Fig. 9), was based on the assumption that gas is the only phase
in the porous medium Sg = 1 and all gas is flowing as a foam, X f = 1. However, in the
simulation we consider two-phase flow (Fig. 13) and there is a varying foamed gas flowing
fraction (Fig. 14). Therefore, in addition to bubble density variation over time affected by
surfactant concentration (Fig. 15), the source term has a contribution of convection-diffusion
terms. After transient flow, when the foam is in apparent steady state, ∂t n is zero, the number
of bubbles is constant. During this steady state, the convection and the diffusion mechanisms
are observed to be dominant.

3.9 Comparison Between Experimental and Simulation Results

The simulated pressure profile in case of the Bentheimer experiment in Fig. 5mimics features
observed in the experimental result: the delayed foam generation and decrease in the pressure
drop before it reaches steady value of 2.3 × 106 Pa/m. The simulation shows that the water
saturation increases after the maximum pressure drop is achieved. The increase in water
saturation causes a decrease in the pressure drop across the measurement points. However,
the bubble density continues to increase in this part of the simulation. After 15 PV of AOS
and gas injection, the simulated water saturation achieved a constant value of 0.62, leading
to a steady value of the pressure drop 2.3 × 106 Pa/m. The mean absolute error between
theoretical and experimental pressure drop is 1.06 × 105 Pa/m, i.e., within 10 % of the
experimental pressure drop. Possible reasons for the imperfect match between simulation
based on the proposed theoretical procedure and the experimental results are lack of fitting
profiles in case of the uncertainty in the estimation of (a) the bubble density n f from the
experimental pressure drop, (b) the dn/dt from n and (c) the adsorption parameters ka, kd from
the adsorption experiment. In addition, the adsorption parameters are taken from the single-
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phase experiment where the available surface area for adsorption is less than the surface area
for multiphase foam flow. The role of bubble diffusion is not very well understood. These
issues could be addressed in future work. In addition, to use the above procedure in the field,
a further upscaling step is required, for instance using homogenization (Salimi and Bruining
2011).

4 Conclusions

– The experimental pressure drop across the measurement points can be used to obtain a
first estimate of the average bubble density, which can be further used to obtain part of
the source term.

– We measured the experimental pressure drop for two surfactant concentrations (20 ×
CMC and CMC) and for two permeabilities (1860 and 3 Darcy). For the unconsolidated
sandpack experiment (1860 Darcy), the steady state profiles are achieved after 1.3 pore
volume (PV) of AOS injection with a concentration 20 × CMC. For Bentheimer sand-
stone (3 Darcy), the steady state pressure drop is achieved after injection of 12–15 pore
volume of low concentrations of AOS surfactant (of the order of the critical micelle con-
centration (CMC)) due to adsorption behavior. The experimental pressure drop shows a
weakmaximum in the unconsolidated sandpack and a strongmaximum in theBentheimer
core.

– Amodel that leads to four equations, viz., a pressure equation, awater saturation equation,
a bubble density equation and a surfactant transport–adsorption equation can describe
the pressure drop during the foam flow experiments. The viscosity coefficient α in the
Hirasaki–Lawson equation is estimated from the surfactant concentration to relate the
foam viscosity to the estimated bubble density. The trapped gas fraction and the water
saturation can be taken into account as a function of bubble density.

– For the Bentheimer case, simulations indicate that the maximum in the pressure drop
corresponds to a minimum in the water saturation. With the assumption that all gas is
foamed and foam is the only phase in the porousmedium, it is asserted that the dependence
between the source term and bubble density is approximately obtained. The difference
between simulated and experimental pressure drop is within 10%, which suggests that
the first estimate of the bubble generation-coalescence function is of the right order of
magnitude.

– Instead of splitting the source term R(n f ), we investigate terms on the other side of the
bubble density equation, i.e., accumulation, convection and dispersion (diffusion). The
study gives us an idea about their individual contribution to R(n f ). As we approximated
α as a resistance per lamella in the capillary tube, the generation-coalescence function
can only be obtained within a factor. If we consider water saturation (two-phase flow)
and flowing fraction of foam, the rate of change of bubble density during transient state
can be equated to the bubble density generation function plus the terms accounted for
bubble transport by convection and diffusion divided by porosity and saturation.
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