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a b s t r a c t

Foam generated with a surfactant solution and nitrogen is used for oil recovery, acid diversion and
aquifer remediation. In laboratory experiments, the foam mobility is expressed in terms of the pressure
drop across the porous medium and is related to many physical processes. There is lack of data that relate
the pressure drop to a combination of three or more variables simultaneously. This paper investigates the
steady state pressure drop for a combination of six variables, viz., permeability, surfactant concentration,
pH, salinity, surfactant solution velocity and gas velocity. Fourteen pressure drop histories were mea-
sured for an Alpha Olefin Sulphonate solution before and after the injection of nitrogen gas across the
unconsolidated sandpacks of two median grain sizes and across a Bentheimer consolidated core. Our
data set was combined with data sets from the literature leading to 157 data points. Symbolic regression
was applied to the entire data set to produce a number of analytical expressions describing the inter-
active effect of the variables without prior knowledge of an underlying physical process. A simple model
with only one fitting parameter was selected to compare with the experimental data. The slope between
the observed pressure drop and the predicted pressure drop turns out to be 0.8570.03. A sensitivity
analysis of the chosen model shows that the variables affecting the predicted pressure drop, in order of
importance, are permeability, salinity and surfactant solution velocity. The precision of the model
parameter was determined by a bootstrap method. The pressure drop from our data set and one specific
data set from the literature show significant deviation with respect to the pressure drop obtained from
the regression equation. Possible reasons are that the specific data set from the literature uses mixtures
of surfactants and that our data set is confined to conditions that lead to low pressure drops. The purpose
of the data driven model applied to experimental data is only to improve the models based on physical
processes, i.e., mechanistic models. In addition the data driven model can indicate the variable spaces for
which more experiments are needed.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nitrogen foam (a mixture of nitrogen gas and surfactant with
water) can reduce the mobility of a displacing mixture (dispersion)
of water and gas, thereby increasing the oil recovery (Bond and
Holbrook, 1958; Craig and Lummus, 1965; Holm, 1968; Farajzadeh
et al., 2012). Other applications of nitrogen foam are acid diversion
(Xu and Rossen, 2003) and aquifer remediation (Wang and Mul-
ligan, 2004). The foam mobility reduction, essential for such ap-
plications of foam, is attributed to a reduction in the permeability
of the porous medium to the gas (Bernard and Holm, 1964;
Friedmann and Jensen, 1986) and/or to an increase of the gas
viscosity (Svorstøl et al., 1996). In the laboratory, foam is generated
by (1) co-injection of gas and surfactant solution in a porous
medium pre-saturated with surfactant (Friedmann et al., 1991;
Chou, 1991) or (2) by injection of alternate slugs of gas and sur-
factant solution through the core (Friedmann and Jensen, 1986;
Rossen and Gauglitz, 1990). The surfactant lowers the surface
tension of the solution and thereby, with the gas, creates and
sustains lamellae in the porous medium. The gas trapped by the
lamellae (Hirasaki and Lawson, 1985; Falls et al., 1989) and the
immobile fraction of gas (Cohen et al., 1997; Tang and Kovscek,
2006; Nguyen et al., 2007; Balan et al., 2011) result into a pressure
drop increase across the porous medium. Foam propagation occurs
in two states: an initial unsteady state, characterized by an in-
crease in pressure drop and later, a steady state, where the pres-
sure drop becomes constant. The steady state pressure drop occurs
when all transport processes affecting the pressure drop, viz.,
convection, diffusion, generation and destruction add up to zero
(Ashoori et al., 2011). During the steady state, foam propagation
through porous media can be described with the two-phase Dar-
cy's law (Holm, 1968). In other words, gas is considered to travel
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through the porous medium as a separate phase and the flow rate
is determined by the relative permeabilities (Buckley and Leverett,
1942). In such a steady state, the gas mobility can be expressed as
a ratio of the effective permeability and the apparent viscosity, i.e.,

μk /e a. Furthermore, the gas mobility is related to the flow rate of
foam and the pressure drop observed across the core (Osterloh
and Jante, 1992). The gas mobility is affected by a boundary con-
dition where no water exits the core until = −S S1w gr (Sgr is ir-
reducible gas saturation and Sw water saturation) is the so-called
capillary end effect condition (Barenblatt et al., 1989). Such con-
dition leads to an enhanced saturation at the end of the core
(Yortsos and Chang, 1990) and may cause a non-representative
value of the pressure drop in the measurement during experi-
mentation (Osoba et al., 1951). Eliminating errors due to the ca-
pillary end effect can be achieved by (1) measuring the saturation
far enough away from the outflow face (Penn State Method) and
(2) using high flow rates to make the error in the measured sa-
turation negligible (Gas flow method) (Osoba et al., 1951).

The observed steady state pressure drop can be further used to
calculate the foam resistance factor (Pang, 2010) or mobility re-
duction factor (Simjoo et al., 2013). The steady state pressure drop
is affected by several variables, i.e., permeability of the porous
medium, surfactant formulation/concentration, injection rates,
presence of oil, gas fraction, temperature, etc. (Friedmann and
Jensen, 1986; Friedmann et al., 1991; Isaacs et al., 1988; Huh and
Handy, 1989; Hanssen, 1993; Bertin et al., 1999; Simjoo, 2012;
Solbakken et al., 2014; Kapetas et al., 2015). Therefore, the steady
state pressure drop during foam flow through porous media de-
pends on a complex system of multiple variables. To simplify the
complex system of multiple variables, most research studies focus
on a base case after which they modify one or two variable(s) at a
time, to study their effect on the steady state pressure drop, for
example, flow rate and concentration (Fergui et al., 1998) or gas
velocity and surfactant solution velocity (Martinez, 1998; Martinez
et al., 2001). In addition, such studies use a physical base to con-
struct a model for explaining the steady state, i.e., a mechanistic
approach (Kovscek et al., 1997; Rossen et al., 1999). In this respect,
Khatib et al. (1988) explained his experiments with a model based
on the capillary pressure (pressure difference between gas and
surfactant solution phase), which itself depends on the surfactant
formulation, the permeability and the gas velocity. However, some
other researchers (de Vries and Wit, 1990; Persoff et al., 1991)
observed that the steady state pressure drop is a function of the
permeability and surfactant velocity, dominated by bubble trap-
ping and mobilization. To explain both contrasting results, Os-
terloh and Jante (1992) and further Rossen et al. (1995) and Rossen
and Wang (1999) proposed two regions in the pressure drop
contour plot vs. gas and surfactant solution velocity for a given
surfactant formulation and permeability. The region in the pres-
sure drop contour plot, where the pressure drop is nearly in-
dependent of the gas velocity, is called the high quality region; the
term “quality” is defined as the ratio of gas volume and total, i.e.,
gas plus surfactant solution volume. The region in the pressure
drop contour plot, where the pressure drop is nearly independent
of surfactant solution velocity, is called the low quality region.
Martinez (1998) and Martinez et al. (2001) introduced the concept
of critical foam quality to distinguish between the two regions. In
addition, there are other models based on the concepts of local
equilibrium (foam texture is an algebraic function of local condi-
tions (Rossen et al., 1999; Ma et al., 2014; Rossen and Boeije, 2015;
Boeije and Rossen, 2015) and foam bubble population (Kovscek
et al., 1997; Falls et al., 1988; Bertin et al., 1998; Ettinger and Radke,
1992; Kam and Rossen, 2003; Zitha et al., 2006). The difference
between local steady state and bubble population models is well
described in Ma et al. (2015). In combination with the mechanistic
approaches discussed above, Zhao et al. (2012) studied the effect of
salinity and surfactant formulation on the steady state pressure
drop by orthogonal experiments (Montegomery, 2007) to increase
the oil displacement efficiency. Similarly, Wang et al. (2012) stu-
died the quantitative effect of surfactant concentration, foam
quality, temperature and oil saturation on the steady state pres-
sure drop by design and analysis of experiment (DAOE) metho-
dology (Montegomery, 2007). The ensuing polynomial expression
consists of the product of the individual effects of interacting
variables, e.g., foam quality and surfactant concentration, along
with a fitting parameter for each combination of the variables to
accommodate the interactive effect. Among the variables, the ef-
fect of pH on the liquid film for the applications in porous media
has been well considered (Nguyen et al., 2002; Farajzadeh et al.,
2011), however, not in combination with other variables.

The modeling approaches mentioned above pose practical dif-
ficulties for reasons of the required large number of experiments
and the large number of fitting parameters. For example, the high
and low quality regions for constant permeability and constant
surfactant concentration are found by doing experiments for a
range of combination of gas and surfactant solution velocities (Ma
et al., 2013; Boeije and Rossen, 2013). Such models require physical
understanding and are difficult to derive for such a complex sys-
tem as foam flow. In addition, there is a lack of experimental data
that combine orthogonal or even box design (Mason et al., 2003)
for variables such as permeability, surfactant concentration, foam
quality and salinity affecting the pressure drop. It is difficult to
generalize conclusions from the literature as those studies are
(deliberately) designed to be unique and are intended for re-
stricted variable spaces. One might ask: (i) can limited experi-
mental data with DAOE methodology represent the whole popu-
lation of foam experiments from the literature?, (ii) is there a way
to use the previous experimental results to generalize the effect of
various variables on the steady state pressure drop? and finally,
(iii) can we rank the effect of variables on the pressure drop? The
path towards resolving these questions could be elucidated with
data driven models constructed by applying regression to experi-
mental results. However, conventional regression involves a pre-
sumed interrelationship between the variables, which might miss
the importance of one variable over another affecting the pressure
drop. Therefore, we are motivated to find the hierarchy between
the variables with a maximally feasible set of experiments using a
non-conventional regression analysis called symbolic regression
(Schmidt and Lipson, 2009; Vladislavleva et al., 2010). Symbolic
regression, with its ability to search for the model that best de-
scribes the data behavior without imposing a priori assumptions,
would offer the advantage over conventional multiple regression.
Based on a literature survey, we attempt the random variation of
six experimental variables, viz., permeability (1860 Darcy, 130
Darcy and 3 Darcy), the concentration of surfactant (0.0375 w/w%,
0.075 w/w% and 0.15 w/w%), gas and surfactant solution velocity
(0.27–3.97 m/day), salinity (zero, 0.5 M NaCl) and the pH (6.5, 3.0)
as representative conditions in a reservoir. Complimentary to
studies conducted in the literature (Simjoo et al., 2013), experi-
ments were conducted with Bentheimer with a low AOS con-
centration (0.0375 w/w%) and at a low gas fraction (E24%) for
two injection rates. Such random variation would circumvent the
practical difficulty of conducting an infeasible number of experi-
ments (orthogonal or box design) to rank the variables with re-
spect to their relative importance to affect the pressure drop. Our
experiments were designed to add data points that are at condi-
tions less studied in the literature. To overcome the difficulty of
statistical inference with only 14 (our) data points, we add 112
data points from Martinez (1998) and Martinez et al. (2001), 21
data points from Osterloh and Jante (1992) and 12 data points
from Persoff et al. (1991). The selected data points were similar in
some experimental conditions (surfactant-nitrogen co-injection)



Table 1
Porous media used in the experiments.

Porous media Length
(mm)

Median grain
size (mm)

Porosity (%) Permeability
(Darcy)

Coarse sand 150 1.0070.12 38 18607100
Fine sand 150 0.3070.08 30 130730
Bentheimer 170 – 2171 3.070.5
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and surfactant solutions (AOS), but also had slight variations, viz.,
single experiment with various steady state pressure drop values
corresponding to various gas and surfactant solution velocities:
Martinez (1998) and Martinez et al. (2001) and mixing of two
surfactants: Osterloh and Jante (1992). The experimental results
from the literature were used along with our own results to search
for the model form that best describes the data behavior using a
minimal number of fitting parameters. We used a freely down-
loadable software ®Eureqa (Nutonian, 2015) with the aforemen-
tioned data set to create a host of model expressions. To select a
model from the candidate expressions, we used Akaike's in-
formation criterion (AIC) (Akaike, 1974), which measures the
goodness of fit of the statistical models by incorporating both the
likelihood of the model and a penalty for extra parameters.

In addition to criteria for model selection, accurate model
verification/validation is also important to assess the merit of the
selected model. The sensitivity of the predicted pressure drop to
the variable in the model was characterized by the symbolic re-
gression software. Further, we compared the observed pressure
drop and the predicted pressure drop by plotting them on Y- and
X-axis respectively. The traditional approach of using the same
data, both to construct the model and to estimate its predictive
performance, tends to bias the estimate of the model-prediction
error. The fitted parameters are connected with the original data
set and therefore cannot necessarily be used for different data sets
(Olden and Jackson, 2000). The approach of cutting the data in half
(one half for modeling and another half for validation) has a
drawback of not utilizing precious data points for model building.
Therefore, for the purpose of validating the model, a bootstrap
method (Efron and Tibshirani, 1993; Press et al., 2007) was used to
generate 50 simulated data sets different from the original data
set. A given bootstrap sample data set consists of some original
data points repeated in the set while some appear only once and
some not at all Vittinghoff et al. (2012). The standard deviation
obtained from the 50 data sets was used to determine the preci-
sion of the fitting parameter of the model.

The paper is structured as follows. For the purpose of de-
scribing our data set, we explain the experimental procedure in
Section 2 for co-injection of nitrogen and water with dissolved
surfactant in different porous media, namely (1) an un-
consolidated sandpack of 1860 Darcy, (2) an unconsolidated
sandpack of 130 Darcy of 15 cm and (3) a consolidated Bentheimer
core of 3 Darcy of 17 cm. The porous media/solutions and the set
up are described in Section 2.1 and in Section 2.2 respectively.
Section 2.3 describes 14 experiments with the random variation of
six experimental variables, viz., permeability, salinity (NaCl), sur-
factant concentration, pH (hydrogen ion concentration), surfactant
solution velocity and gas velocity. In Section 3, the steady state
pressure drop measured across the porous medium is reported to
show the effect of the used variables on foam flow. In Section 3.1,
application of symbolic regression on 157 experimental data
points is explained. A procedure is given for an optimal choice of
the selected rational expression with fitting parameter A0. Fur-
thermore, the simplest bootstrap method is used to get 50 simu-
lated data sets. The model from symbolic regression with the fit-
ting parameter A0 is applied to 50 data sets. A parameter for each
simulated data set ( –A AS S

1 50) has been found by variance mini-
mization between predicted and observed pressure drop in Mi-
crosoft ®Excel . The deviation of those simulated parameters with
respect to the predicted parameter is used to estimate the error in
the predicted parameter. The experimental results in Section 4.1
are compared for the relationship between the variables and their
interactive effect on the pressure drop. One of the most important
results is the analysis that shows the missing data, necessary to
find the interdependence of the variables affecting the pressure
drop. In Section 4.2, the merit and drawback of symbolic
regression and the bootstrap method are discussed. We end with
some conclusions in Section 5 about the experimental procedure,
about the symbolic regression and about the estimate of the ob-
served pressure drop.
2. Experimental section

2.1. Porous media and surfactant solutions

Three types of porous media were used for the foam flow ex-
periments, viz., coarse sand, fine sand and Bentheimer cores. Ta-
ble 1 shows the grain size, porosity, permeability and length of the
porous media. The surface area of 259 grains each for fine and
coarse sand was measured under the optical microscope. The
particle size was calculated by πAB4 / , where A is the surface area
and B is the roundness. We selected median size of the sample.
Prior to its use the sand was treated with a potassium-dichromate-
sulfuric acid solution to make it completely water-wet. It was kept
in the acid for one day and rinsed with tap water until all the acid
was removed according to the procedure mentioned by Furniss
et al. (1989). Subsequently the sand was dried and poured, using
the procedure of the seven sieves (Wygal, 1963), in an acrylic tube
to which we refer as the sandpack. In case of Bentheimer, the core
for the experiment was cut from larger samples and was not
pretreated prior to its usage. The porosity of the unconsolidated
coarse and fine sandpack were assumed (Panda and Lake, 1994),
while the porosity of the Bentheimer core was measured by
comparing its weight with and without water. The permeability of
the sandpack and core were measured by a single phase water
permeability test prior to foam flow experiments. Figs. 1(a) and
(b) show photographs of the unconsolidated sandpack and the
Bentheimer core respectively with the positions for the measure-
ment of the pressure difference. Four pressure measurement
points were used, viz., at the outlet, inlet, and two (for a pressure
difference meter) in the middle at a distance of 0.06 m apart for
the sandpack and 0.09 m apart for the Bentheimer core. The ad-
vantage of the short core is that experiments can be finished faster
while the disadvantages of the short cores for foam experiments
are mainly capillary entry and end effect that affects foam mobility
measurements (Reviewer, 2015). We used a 39.1 w/w%

− ®Bio TERGE AS-40 Sodium C14–C16 Alpha-Olefin-Sulfonate (AOS)
to prepare 0.3 w/w% AOS solution in both: a 3 w/w% brine
(0.5 M70.01 NaCl) and double distilled water with dissolved HCl
(pH¼3.070.3). Both solutions were further diluted to prepare a
0.075 w/w% AOS solution in 0.3 w/w% brine for the unconsolidated
coarse sandpack and a 0.0375 w/w% AOS in acidic water for Ben-
theimer. For the fine sandpack we used an AOS solution in double
distilled water (pH¼6.570.2) with varying concentration (0.0375,
0.075, 0.15 w/w%) for various experiments.

2.2. Experimental set up and procedure

Table 2 gives measured property, brand/model, range and ac-
curacy of the instruments used in the set up. Fig. 2 shows the
photograph of right side of the set up. The surfactant solution from



Fig. 1. Porous Media (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Technical specification of the instruments used in the experiments.

Instrument Measurement Unit Brand/model Range Accuracy7

Reciprocating pump Surfactant solution mass ml/h Pharmacia P-900 0–500 1.5–2
Manometer Pressure bar EndressþHouser 0–65 0.1
Manometer Pressure difference bar EndressþHouser 0–3 0.03
Flow controller Gas mass slpma Sierra instrumentsb 0–1000 10

a Standard liter per minute.
b Smart ®Trak 2 100.

Sa
nd

pa
ck

Surfactant 
solution 
vessel

Reciprocating 
pump

Pressure 
manometer

Pressure 
difference 
manometer

Gas-liquid 
mixing

15 centim
eter

Fig. 2. Photograph of the right side of the set up (injection module). The surfactant solution was pumped from the vessel by the reciprocating pump to mix with the nitrogen
gas at the mixing junction. The foam went further through the inlet pressure manometer, foam generator and finally into the porous medium.
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a storage vessel was pumped into the porous medium by a pump
of the reciprocating type (two cylinders, one for injection and one
for refill). The storage vessel was connected to the pump by nylon
tubing with an inside diameter of 2 mm and an approximate
length of 1 m. Nitrogen gas from the gas supply system at a
pressure 7.070.1 barA (absolute pressure) was mixed with sur-
factant solution 30 cm before the injection point of the sample. A
flow distributor was used at the bottom and the top between in-
jection tube and sandpack to avoid spurious entrance and pro-
duction effects. The flow distributor at the bottom of the sandpack
contained a steel and nylon filter of mesh size 10/cm and a
thickness of 0.12 mm to avoid sand spillage. The direction of the
flow in the porous medium was changed for the specific experi-
ments by switching valves at the top and bottom of the porous
medium sample. Fig. 3 shows the photograph of left side of the set
up. The flow rate of the injected mass was of the range
5.5–175.0�10�9 kg/s and kept constant during the foam experi-
ment. The foam was collected in the production vessel after it
passed through the porous medium. The back pressure valve was
regulated by high pressure nitrogen from a cylinder, not shown in
the photographs. The manometers (inlet pressure, outlet pressure
and pressure difference) were connected to a data acquisition
system and a computer to record the pressures versus time. The
pressure manometers were calibrated with a pressure calibrator
2095PC (range 1–10 bar and 3–100 bar). We did not measure the
temperature in the sandpack experiments. In case of the Ben-
theimer core experiments, a Platinum/Rhodium alloy thermo-
couple of type R was used to measure the temperature at the inlet
of the core and had a sensitivity of 10.0 μV/°C.



Backpressure
indicator

Gas controller

Backpressure  valve

Collection
vessel

Outlet pressure 
manometer

Visual cell

10 centimeter

Fig. 3. Photograph of the left side of the set up (production module). After the
porous medium, the foam went through the visual cell, the pressure manometer
and the back pressure valve. Finally, it was collected in the fluid collection vessel.
The gas controller seen here was a part of the injection module to let the nitrogen
gas in the mixing zone in the right side of the set up (Fig. 2).
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2.3. Foam flow experiments

Fourteen experiments are reported here, i.e., five with coarse
sandpack, seven with fine sandpack and two with a Bentheimer
sandstone core. All experiments were carried out at room tem-
perature. As the experiments were conducted during day time
only, we assume a temperature fluctuation of 3–5 °C. Table 3
shows porous media, test name, time, date, back pressure, sur-
factant concentration, medium, flow direction, injected surfactant
velocity and the pore volume injected (PV) before the start of gas
injection for each experiment. PV of the injected surfactant solu-
tion was calculated by ϕ( ) ( )u t L/l where ul is the surfactant solution
velocity (m/s), t is the time (seconds), ϕ is the porosity of the
porous media and L is the distance (m) across measurement
points. Table 3 further shows the pressure at the inlet manometer
(Pin), pressure at the outlet manometer (Pout) and the pressure
difference across the measurement points of the porous medium
(ΔP), before the start of the experiments and during the steady
flow of single phase surfactant solution. Table 4 focuses on the
steady state foam flow after the surfactant solution and gas mix-
ing. The gas velocity at the inlet of the porous medium during
steady state (ugss) depends on the pressure at the inlet (Pin),
therefore, was calculated by dividing the injected gas velocity by
the pressure ratio at the inlet manometer. The total superficial
velocity ut is the addition of the corrected gas steady state velocity
ug

ss and the surfactant solution velocity ul. Other parameters
mentioned in Table 4 are back pressure (BP, barA), the quality of
the flow ( η = u u/ss g

ss
t
ss) and the foam pressure drop ΔPf at steady

state.
Coarse sandpack: A surfactant solution with a concentration of

0.075 w/w% AOS in 0.5 M brine (NaCl) was used for all experiments
in the unconsolidated sandpack of 1860 Darcy. The flowwas from the
bottom to the top of the sandpack. The first foam experiment “A”
started on the 14th February 2011 by flushing a surfactant solution at
a rate 1.44 m/d using a back pressure of 7 barA. At t¼300 s, we
opened the back pressure valve, thus releasing the back pressure. At
t¼811 s from the start of the experiment, i.e., 500 s after the release
of the back pressure valve, nitrogen gas was injected at a rate 3.17 m/
d in the already flowing AOS solution 30 cm upstream of the inlet of



Table 4
Experimental details during the steady state foam flow after the gas injection.

Porous media Test BP ug
st P ss

1 ug
ss ul ut

ss ηss AOS Δ ×P 10f
5

barA m/d Pa m/d m/d m/d quality w/w% Pa/m

Coarse A Atm. 3.17 3.56 0.89 1.44 2.33 0.38 0.075 17.0a

B Atm. 2.17 2.93 0.74 1.44 2.18 0.34 0.075 26.570.20
C Atm. 1.09 3.30 0.33 1.09 1.41 0.23 0.075 21.070.07
D Atm. 4.15 3.91 1.06 2.76 3.82 0.28 0.075 26.670.03
E Atm. 4.15 3.91 1.06 2.76 3.82 0.28 0.075 26.870.20

Fine F Atm. 5.43 6.96 0.78 1.09 1.87 0.42 0.075 7.570.50
G Atm. 4.34 2.78 1.56 1.09 2.65 0.59 0.0375 1.570.10
H Atm. 4.34 1.24 3.50 1.09 4.59 0.76 0.0375 1.670.08
I Atm. 6.94 1.74 3.97 1.73 5.70 0.70 0.0375 3.770.80
J Atm. 6.94 2.78 2.49 1.73 4.22 0.59 0.15 15.070.10
K Atm. 6.94 1.74 3.97 1.73 5.70 0.70 0.0375 3.770.20
L Atm. 4.15 3.40 1.22 1.09 2.31 0.53 0.15 26.070.70

Bentheimer M 4.1 1.62 1.82 0.89 3.25 4.14 0.22 0.0375 23.770.05
N 4.1 0.41 1.51 0.27 0.81 1.08 0.25 0.0375 42.570.10

ug
st, gas velocity at the start; ul, surfactant solution velocity; BP, back pressure; AOS, Alpha Olefin Sulphonate; ΔPf , foam pressure drop.

Steady state: (i) P1ss, pressure at the inlet; (ii) ugss, gas velocity; (iii) utss, total velocity; (iv) ηss, quality.
a Steady state pressure drop not recorded due to the limit of the manometer.
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the sandpack. We used the same unconsolidated sandpack next day
for the next foam experiment “B”with AOS flow rate of 1.44 m/d and
a back pressure of 21 barA. At t¼3193 s, i.e., after flushing 2.5 PV of
AOS, we opened the back pressure valve and waited 167 s to open
the gas valve. The third foam experiment “C”was started on the 17th
February 2011 by flushing the surfactant solution at 1.09 m/d (Thorat
and Bruining, 2016). At t¼3309 s from the start of the experiment,
the back pressure valve was opened and at t¼3346 s, nitrogen gas
with an initial gas velocity of 1.62 m/d was injected. We started the
next foam experiment “D” on the 19th February 2011 with the same
unconsolidated sandpack. The measurement started after an un-
known pore volume of 0.075 w/w% AOS was mixed with gas at the
total superficial velocity of 3.30 m/d. We repeated experiment “D” on
the 21st February 2011, designated as “E”.

Fine sandpack: We conducted seven foam experiments with the
fine sandpack of 130 Darcy with various AOS solutions (0.0375, 0.075
and 0.15 w/w% in the double distilled water of 6.5 pH) with atmo-
spheric back pressure. The flow direction was from the top to the
bottom. The permeability tests were conducted between the foam
experiments with tap water as a single phase. The first foam ex-
periment “F” was with 0.075 w/w% AOS. The next experiment ”G”
was performed on the 9th August 2011 with a low concentration of
0.0375 w/w% AOS. For experiment “H” on the 19th August 2011, the
fine sandpack was saturated during the previous evening. After ex-
periment “H”, we conducted permeability experiment for three
hours with tap water at a varying rate of 0.1–1.0 m/d. Experiment “I”
was started on the same day by injecting 0.0375 w/w% AOS at 15:38
at a rate of 1.73 m/d. The foam experiment “X” on the 21st August
2011 was started by injecting 0.15 w/w% AOS solution at 1.73 m/d
with an atmospheric back pressure. After four hours (i.e., 70.0 PV
injected), the experiment had to be stopped because of lack of sol-
vent. 2.0 PV of surfactant solution were injected on the next day
before opening the gas valve for Experiment “J”. Experiment “J” was,
therefore, considered as a continuation of the previous experiment.
Next day on the 23rd August 2011, experiment “I” was repeated
under the name “K”. After 2158 s, keeping the back pressure atmo-
spheric, nitrogen gas at a flow rate of 6.91 m/d was added to the
already flowing 0.0375 w/w% AOS solution. We continued the ex-
periment for four hours, i.e., 40.0 PV. A day before the next foam
experiment, we rinsed the sandpack with tap water. We conducted
the high concentration 0.15 w/w% AOS experiment “L” on the 29th
August 2011 at an injection velocity 1.09 m/d for 5.0 PV of surfactant
solution – gas injection.
Bentheimer: Two experiments were carried out with the Ben-
theimer core of 3 Darcy for low AOS concentration of 0.0375 w/w%
in acidic (pH¼3.0) water. The back-pressure was kept at 4 barA
throughout the experiment. We removed the filter (that generates
the foam) and a visual cell (implemented for the observation of
foam) to avoid a large pressure gradient at the entrance. Before the
experiment started, the Bentheimer core was flushed with CO2 for
five minutes. The CO2 was followed by 100 ml of double distilled
water with HCl (pH 3.0) at a rate 0.61 m/d for five minutes to re-
move any trapped gas. The foam experiment “M” was started on
the 19th April 2012 by flushing the surfactant solution at a velocity
of 3.25 m/d. After 97 ml (4.5 PV) of surfactant solution passed into
the core, nitrogen gas was injected at a superficial velocity of
1.62 m/d in the already flowing solution. After injection of 700 ml
(30 PV) of surfactant solution, the measurements were stopped by
closing the gas and liquid flow. The measured temperature fluc-
tuated between 15 and 16 °C. For experiment “N” on the 26th
September 2012, we followed the initial steps of the previous
experiment. The foam experiment was started by flushing the
surfactant solution of 0.0375 w/w% concentration at a velocity of
0.81 m/d in the Bentheimer core. After 78 ml (3.5 PV) of surfactant
solution passed into the core, nitrogen gas was mixed at a rate of
0.41 m/d. After the injection of 400 ml (50 PV) of AOS solution the
experiment was stopped. The measured temperature fluctuated
between 13 °C and 15 °C.
3. Results

The main result is the pressure drop across the measurement
points during the steady state foam flow (ΔPf ). From here on, we
refer to the pressure drop divided by the distance between the
measurement points as the pressure drop, unit Pa/m. The plots
contain the observed pressure drop divided by the distance be-
tween the measuring points versus the pore volume of surfactant
solution and gas injected after opening of the gas valve. The total
superficial velocity is calculated by adding surfactant injection
velocity and steady state gas velocity, and is given along with the
quality (ratio of gas to total velocity) in the brackets. The chron-
ological sequence of the experimental results for each porous
medium is given below.

Coarse sandpack: For all experiments with the coarse sandpack
of 18607100 Darcy, we used 0.075 w/w% AOS solution in 0.50 M



Fig. 4. Foam pressure profile for the unconsolidated sandpack of 18607100 Darcy with 0.075 w/w% AOS solution and nitrogen. The foam quality is mentioned in the
brackets here onwards in the figures.
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brine. The pressure profiles for the experiment “A” and “B” are
shown in Fig. 4(a). For experiment “A”, after 2000 s of 2.1 PV of gas
and surfactant solution injection, the pressure drop increased ra-
pidly. After 3268 s of 3.1 PV of gas and surfactant solution injec-
tion, the pressure drop was 17.0 �105 Pa/m. However, the man-
ometer reached its limit to measure the pressure drop and
therefore we could not measure the steady state pressure drop. In
case of experiment “B”, the pressure drop immediately increased
to 10.0�105 Pa/m after the injection of gas. During the next
2000 s, i.e, 2.0 PV, the pressure drop did not increase. After
t¼2560 s of 2.8 PV of gas and surfactant solution injection, the
pressure drop fluctuated around 26.570.20�105 Pa/m, which we
took as the steady state pressure drop. The steady pressure drop
remained around this value during the rest of the experiment for
next 2000 s of 2.0 PV injection. Fig. 4(b) shows two experiments
“C” and “E” for the total superficial flow velocities 1.41 m/d and
3.82 m/d respectively. In case of experiment “C”, we achieved a
steady pressure drop of 21.070.07�105 Pa/m after 1.3 PV (Thorat
and Bruining, 2016). We continued the experiment for 6.0 PV of
surfactant solution–gas mixture. Experiment “E” shows a steady
pressure drop of 26.870.2�105 Pa/m after the injection of 5.0 PV
for 3000 s. The pressure drop remained steady during the rest of
the experiment, i.e., next 6000 s and 15.0 PV.

Fine sandpack: Fig. 5 shows the foam pressure profile for
0.075 w/w% AOS for experiment “F” of 130 Darcy fine sandpack.
After an initial fluctuation of 10–15 s due to the opening of the gas
valve, a steady pressure drop of 5.0�105 Pa/m has been observed.
However, after 10.0 PV the pressure drop increased and after 15.0
PV the pressure drop was 7.570.50�105 Pa/m, which we con-
sider as the steady state pressure drop. Fig. 6(a) shows the pres-
sure drop for experiments ”H” and “I” using 0.0375 w/w % AOS. A
sudden jump in the pressure drop upon nitrogen injection was
observed in both experiments. In experiment “H”, the pressure
drop decreased steadily to a steady value of 1.670.08 �105 Pa/m
after an initial steep decrease for about 5.0 PV. In experiment “I”,
which was later repeated as experiment “K”, the pressure drop
decreased to attain a steady value of 3.770.80�105 Pa/m after
about 2 h (20.0 PV). Fig. 6(b) shows the pressure drops for a high
AOS concentration (0.15 w/w%) experiments “J” and “L”. The
steady state values achieved are 15.070.10�105 Pa/m for the
high total superficial velocity (4.22 m/d) and
26.070.70�105 Pa/m for the low total superficial velocity
(2.31 m/d). For Experiment “J”, the pressure drop attained a steady
state value of 15.070.10 �105 Pa/m after 1.0 PV of surfactant and
gas injection. For experiment “L”, the pressure drop climbed from
a value of 0.48�105 Pa/m to a steady pressure drop of
26.070.70�105 Pa/m after 1.5 PV of surfactant solution and gas
injection.

Bentheimer: Fig. 7 shows two experiments with the Bentheimer
core at a concentration of 0.0375 w/w% AOS solution and a pH of
3.0. The pressure drop for experiment “M” was 2.0�104 Pa/m
during initial 2.0 PV of AOS-gas injection at a total superficial ve-
locity of 4.14 m/d. The pressure drop achieved a steady value of
23.770.05�105 Pa/m after 10.0 PV were injected. The initial
pressure drop for experiment “N” due to gas injection was



Fig. 6. Foam pressure profile for fine sandpack (130 Darcy). Interactive effect of surfactant concentration and total superficial velocity.
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Fig. 7. Foam pressure profile for the Bentheimer core (3 Darcy) with 0.0375 w/w%
AOS and nitrogen. The pressure drop increased with the decrease in the total su-
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9.6�104 Pa/m at total superficial velocity 1.08 m/d. After 3.7 PV,
the pressure began to increase and around 25.0 PV of gas and
AOS injection the pressure drop attained a steady value
42.570.10�105 Pa/m.

3.1. Statistical modeling

Fig. 9 shows the complete procedure of the statistical approach,
i.e., data processing, modeling and verification/validation. Based
on a literature survey and the experimental results in Table 4 we
selected permeability, salinity (NaCl), pH, surfactant concentration,
surfactant solution velocity and gas velocity as the independent
variables affecting the pressure drop. We coupled our experi-
mental data with the data from Martinez (1998), Martinez et al.
(2001), Osterloh and Jante (1992) and Persoff et al. (1991) to get
157 data points. Flow conditions for the data points used from the
above literature are given in supplementary information S3, page
7. For our experiment “A”, where the pressure crossed the limit of
the manometer, we consider maximum observed pressure drop as
the steady state pressure drop. The effect of pH is quantified in
terms of hydrogen ion concentration, i.e., pH 5.0¼1�10�5 mol/l.
The cases from the literature are assumed with pH 5.0. We as-
sumed that all data contained same surfactant (AOS, mol/l) and
same salinity formulation (NaCl, mol/l). The data are given in the
supporting information (Table 1: S2), which can be downloaded
from the website. For the modeling part, we used ®Eureqa (Nu-
tonian, 2015), a software package based on symbolic regression to
determine the relation between the independent variables and the
dependent variable, i.e., the observed pressure drop. The software
searches the fitting parameters and the form of the equations si-
multaneously (Schmidt and Lipson, 2009). From these symbolic
functions, partial derivatives are derived for the same pairs of
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variables for each candidate function. The steps of deriving nu-
merical and symbolic partial derivatives are repeated to get the
best solutions. For more details we suggest the background article
(Schmidt and Lipson, 2009) and an article on genetic program-
ming (Veeramachaneni et al., 2012). The software produced a
small set of possible analytical expressions given in supporting
information (Table 2: S6). We follow the criticism of Dyson (2004)
and avoid models with too many fitting parameters. Indeed, a
trade off between error and complexity is made to select a model
from the expressions, which is of the form:

Δ =
( )

P
A NCU

k 1
w
NC

0

where k, NC, and Uw are the permeability (m2), the salinity, i.e.,
NaCl (mol/l) and the surfactant solution velocity (m/s). A0 is the
only fitting parameter. ΔP is the predicted (modeled) pressure
drop.

The influence of a variable (for example permeability: k) on the
independent variable, the predicted pressure drop ΔP was calcu-
lated at all input data points. Eureqa uses σ σ|∂Δ | ( ) (Δ )P k P/k , where
|∂Δ |Pk is the absolute average value of the partial derivative of ΔP
with respect to k. σ ( )k is the standard deviation of k in the input
data and σ (Δ )P is the standard deviation of ΔP . If the sensitivity
value was 0.5, when the variable k was changed by one standard
deviation, the output variable ΔP would change by 0.5 of its
standard deviation (Raynolds, 2014). The percentage of data points
for which ∂Δ >P 0k is denoted by % positive, i.e., the data points for
which an increase in the variable k would lead to an increase in
the pressure drop, ΔP . The percentage of data points where
∂Δ <P 0k is denoted by % negative, i.e., the data points for which an
increase in the variable k would lead to a decrease in the pressure
drop, ΔP . The magnitude of the positive and negative increase was
calculated by σ σ|∂Δ | ( ) (Δ )P k P/k for the respective data points. We
verified our model further by comparing the observed pressure
drop and the predicted pressure drop by plotting them on the Y-
and X-axis respectively. We considered a linear model

( ) = ( | ) = +y x y x a b a bx, , where y(x) is the predicted pressure
drop; the fitting parameter “a” is the intercept and the fitting
parameter “b” is the slope of the line. As the error in the observed
pressure drop was not known, we assumed that all measurements
have the same standard deviation. We calculated the intercept, the
slope and their respective standard deviations by formulae derived
from minimization of the chi-square merit function (Chapter 15,
modeling of data from Numerical recipes Press et al., 2007).

For validation, we assumed that the data points were in-
dependently and identically distributed. We used a bootstrap
procedure involved drawing 157 data points at a time with re-
placement from the original set by independent random sampling.
Because of the replacement, a data set is created in which a ran-
dom fraction of the original points (typically 1/e¼37%) (Press
et al., 2007) is replaced by duplicated original points. We gener-
ated 50 such synthetic data sets using visual basic in ®Excel , each
with 157 data points. The data sets are subjected to the same
model Δ =P A NCU K/w

NC
0 as the original data. The fitting parameter

for each simulated data set is found by minimizing the sum of
squares of difference between predicted pressure drop and ob-
served pressure drop by the Generalized Reduced Gradient (GRG)
nonlinear engine in ®Excel . The 50 values of the fitted parameters
(As

1 to As
50) for simulated data set were compared to the original

fitted parameter A0 to obtain the error.

3.2. Statistical results

Table 5 shows the sensitivity analysis for the selected model
equation (1). The relative impact of the permeability, salinity and
surfactant solution velocity on the pressure drop is 148.8, 14.06
and 0.61 respectively. For all (100%) data points, an increase in the
permeability leads to a decrease in the pressure drop with a ne-
gative impact of 148.8. For all (100%) data points, an increase in the
surfactant solution velocity leads to an increase in the predicted
pressure drop, albeit with a small positive impact of 0.61. The ef-
fect of salinity for the selected model is ambiguous. Indeed, the
salinity (NaCl) for 38% of all data points shows a positive impact
with a magnitude of 35.3. But for the remaining 62% of the data
points, it decreases with a small negative magnitude of 1.97.

The predicted pressure drop values in Fig. 10 are calculated by



Table 5
Variable sensitivity analysis for the selected model by ®Eureqa .

Variable Sensitivity Positive (%) Positive magnitude Negative (%) Negative magnitude

Permeability 148.79 0 0 100 148.79
Salinity 14.738 38 35.936 62 1.9755
Water velocity 0.61498 100 0.61498 0 0

Sensitivity, the relative impact that a variable within the model has on the predicted pressure drop; % Positive, percent data points, which show an increase in the predicted
pressure drop with the increase in the variable; Positive magnitude, size of the positive impact; % Negative, percent data points, which show a decrease in the predicted
pressure drop with the increase in the variable; Negative magnitude, size of the negative impact.
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using Eq. (1) from set of equations (given in supplementary
equation S2) generated by symbolic regression using original ex-
perimental data from our work and from the literature (given in
supplementary section S1). Readers can use the data from sup-
plementary information (given in S1) in freely available software
Eureqa to generate set of equations (given in S2). The procedure of
generating these equations is briefly discussed in subsection sta-
tistical modeling, while the details of the procedure can be found
in the work by Schmidt and Lipson (2009). Fig. 10 shows the ob-
served pressure drop from the experiments versus the predicted
pressure drop from Eq. (1). The observed pressure drop deviated
from the predicted pressure drop by a mean absolute error of
2.1670.03�106 Pa/m, which is 10% error for a typical data point
of 2.0�107 Pa/m. The intercept of the straight line is
17.6�105 Pa/m with standard deviation of 3.22�105 Pa/m. The
slope between the observed pressure drop and the predicted
pressure drop data is 0.85 with a standard deviation of 0.03. When
the model is applied to 50 data sets with the used bootstrap
method, a small error of 3% in the fitting parameter was observed,
i.e., = ±A 6078 1630 .

The model does not match with the experimental results on the
contribution of surfactant concentration (Fig. 8), where the ob-
served pressure drop increases with an increase in the surfactant
concentration while other variables (permeability, salinity, etc.)
are constant. The model shows considerable discrepancy in the fit
for the data points with the lowest observed pressure drop, i.e.,
our data points. The observed pressure drop in this work is much
higher than the predicted pressure drop. Moreover, the model also
shows a large discrepancy for the data points with the highest
observed pressure drop, i.e., the data points of Osterloh and Jante
(1992). Although the model shows some agreement with the data
from Martinez (1998) and Martinez et al. (2001), the interactive
effect of gas and surfactant solution velocity on the pressure drop
as explained in the original article is not observed.
4. Discussion

We split the discussion in two parts, viz., (i) experimental
analysis and (ii) statistical analysis. In the experimental analysis
we discuss the variables affecting the time to reach the steady
state pressure drop and the value of the steady state pressure
drop. In the statistical analysis we discuss quantitatively (i) the
sensitivity of the pressure drop to the variables from the selected
model and (ii) the difference between the predicted pressure drop
and observed pressure drop for the data set.

4.1. Experimental analysis

We observed the “S” shaped initial part of the pressure drop
curve in all experiments, which represents foam displacing sur-
factant solution in the AOS saturated core. The gravitational effect
due to direction of the flow is found negligible, i.e.,ρ g L�98 Pa
compared to foam pressure, which is of the order 1�106 Pa. In
case of the same permeability, the steady state pressure drop de-
pended on the initial AOS saturation. For example, the first ex-
periment “A” (Fig. 4(a)) for coarse sandpack, where 0.54 PV sur-
factant solution was injected before the gas, the effect of foam
formation was observed only after 2.0 PV of AOS and gas injection.
However, the next experiment “B” (Fig. 4(a)), where 2.5 PV of AOS
solution was injected, an immediate increase in the pressure drop
after the gas injection was observed. The reason for the delay to
reach the steady state pressure drop can be due to a retardation
effect caused by the adsorption of surfactant as noted by Chou
(1991). When other variables (permeability, AOS conc. and PV of
AOS before the gas injection) are the same, the steady state was
achieved at different times for different superficial velocities; for
example, Bentheimer core with 0.0375 w/w% AOS and E 4.0 PV
AOS before gas injection. Experiment “M” took 10 PV to attain the
steady state pressure drop, while experiment “N” took 20.0 PV,
which used one-fourth of the total superficial velocity of experi-
ment “M”. From the simulations in our first paper (Thorat and
Bruining, 2016), the capillary entry and end effects occur well
outside the region where we measure the pressure drop. The si-
mulated saturation during steady state flow for Bentheimer (Expt
“M” in the current paper) is almost equal between the measure-
ment points. Similar results can be shown for the sandpack ex-
periments as well. With other variables kept constant (c.p.), the
steady state pressure drop was observed to increase with in-
creasing surfactant concentration or with increasing total super-
ficial velocity. The low permeability cases, as shown for Benthei-
mer (Fig. 7) has by far the highest pressure drop, even with the
lowest surfactant concentrations and low superficial velocities. In
the case of unconsolidated coarse sandpacks (Fig. 4(b) Thorat and
Bruining, 2016) and the fine sandpack (Fig. 6(a)), the steady state
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pressure drop increased with the increase in the total superficial
velocity for constant AOS concentration and constant permeability.
In addition, this trend was not affected by a foam quality change.
At a high surfactant concentration (0.15 w/w% AOS: Fig. 6(b)) for
the case of the fine sandpack and at low concentration for Ben-
theimer (0.0375 w/w% AOS : Fig. 7), the steady state pressure drop
increased with a decrease in the total superficial velocity. The ef-
fect can be due to the low gas velocity and due to the high con-
centration resulting in the creation of numerous thick lamellae.
For the same superficial velocities, the increase in AOS con-
centration (0.0375 w/w% to 0.15 w/w%) resulted in an increase in
the pressure drop across the fine sandpack. Therefore we have not
found the limit after which the pressure drop does not increase
with an increase in the surfactant concentration while maintaining
the other variables (permeability, gas velocity and surfactant su-
perficial velocity) constant. We did not have common cases where
only pH and the salinity of the water was modified. Therefore we
cannot explain their effect on the observed pressure drop. We
could not compare our results directly with the results from the
literature because the exact combination of the variables we used
(permeability, surfactant concentration, gas and surfactant solu-
tion velocities, salinity and pH) are not reported there.

4.2. Statistical analysis

The arithmetic expressions given by the symbolic regression
allow to express the observed pressure drop in terms of only three
variables, viz., permeability, salinity and surfactant solution velo-
city. Equations with less number of variables, e.g., only perme-
ability, show a worse match as given in supporting information
(Table 2 on page S6). If more data were included in the symbolic
regression, we might have to include other physical parameters
like the gas velocity to explain the observed pressure drop. Ex-
tending the data set would also force to consider more parameters
(for instance, presence of oil (aromatic or aliphatic) and soil con-
tent, etc.) on which the predicted pressure drop depends. How-
ever, it is not possible to include each data set which might give
the predicted results closer to the experimental results. The gen-
erated trend by the symbolic regression for the used data suggests
that the gas velocity has no significant effect on the predicted
pressure drop for the entire data set as opposed to the pressure
drop for a reduced data set. This is because most literature and our
data considered in this study are at low foam quality. In case of
high foam quality points, at the same permeability and salinity, the
observed data points show variation in the pressure drop, while
Eq. (1) predicts no variation in the predicted pressure drop. This
indicates that more experiments are required in the high quality
regime. The large discrepancy for the data points with the highest
observed pressure drop, i.e., the data points of Osterloh and Jante
(1992) is due to the fact that these data points are obtained for
foams that are obtained by mixing two surfactants, viz., AOS (Al-
pha Olefin Sulphonate) and SDS (Sodium Dodycyl Sulphonate),
which is not considered in the equation. Although the equation
shows some agreement with the data from Martinez (1998) and
Martinez et al. (2001), the interactive effect of gas and surfactant
solution velocity on the pressure drop as explained in the original
article is not observed. Therefore, a relatively important variable
such as the permeability masks the relationships between the
variables in the subsets of data. More experiments are needed for
conditions for which large deviations between observed and pre-
dicted pressure drop occur, i.e., for the extremely low and high
experimental pressure drops.

The possible physical mechanism with which salinity affects
the foam pressure drop, i.e., stability of foam films, can be ex-
plained by the DLVO theory (Overbeek, 1971). The DLVO theory
describes the interaction between double layer forces, Van der
Waals forces and steric forces. In the absence of surfactant (i.e., no
steric forces), an increase in the NaCl concentration would de-
crease the foam stability as a result of double-layer compression
(Wang and Yoon, 2009). However, in the case of the presence of a
surfactant, with other variables kept constant (c.p.),”We anticipate
that (i) at low salt concentration salt mainly affects the charging of
a film interface, whereas (ii) at high salt concentration salt mainly
affects the screening of the electrostatic repulsion between the
two interfaces of the film” (Schelero et al., 2010). Therefore, the
effect of salt concentration can only be observed in limited para-
meter spaces. In addition Eq. (1) needs to be interpreted in a
statistical sense, where, for the available data points, the effect of
salinity on the predicted pressure drop cannot be viewed in an
isolated sense. The only clear trend observed from the equation is
that higher pressure drop is obtained for lower permeable media.
If we consider Darcy's formula to explain the physical mechanism,
higher permeability leads to the lower pressure drop and an in-
crease in water velocity would increase the pressure drop. Eq. (1)
is therefore a data driven equation and not based on physical
mechanism, as explicitly stated.
5. Conclusions
� We measured fourteen pressure drop histories before and after
injection of an Alpha Olefin Sulphonate solution (AOS) with
nitrogen gas (N2) across measurement points in various porous
media. All experiments observed an increase in pressure drop
when nitrogen was added in the flowing surfactant solution.
The initial conditions of the core (gas content, adsorption) in-
fluenced the foam generation in the core. It is possible to obtain
a steady state pressure drop from the pressure drop histories.

� We measured the steady state pressure drop for unconsolidated
sand packs (1860 and 130 Darcy) and a Bentheimer sand stone
core (3 Darcy) for various surfactant concentrations (0.0375,
0.075 and 0.15 w/w%), for various gas and surfactant solution
velocities (0.27–3.97 m/day), for two salinities (0, 0.5 M NaCl)
and for two pHs (6.5, 3.0). The above six variables were varied
simultaneously to obtain their interactive effects on the steady
state pressure drop. We refer to the pressure drop divided by
the distance between the measurement points as the pressure
drop (Pa/m). The pressure drop increased with an increase in
the total superficial velocity and the AOS concentration while
keeping other variables constant (ceteris paribus c.p.). For the
concentration range studied by us, a limiting surfactant con-
centration that gives a maximum pressure drop was not
observed.

� Symbolic regression can be applied to our data along with 143
data points from the literature to produce a number of analy-
tical expressions without prior knowledge of an underlying
physical process. A simple model with a single fitting parameter
can be used to describe the pressure drop with three out of the
six variables, viz., the permeability, the salinity and the surfac-
tant solution velocity. The model can be verified by a sensitivity
analysis, which shows that for the chosen model the variables in
order of importance are the permeability, the salinity and the
surfactant solution velocity. The model can be validated by es-
timating the error in the model parameter (A0¼60787163) by
the applied bootstrap method. The data driven model can be of
help to find the underlying physics of the foam flow through
porous media. The purpose of the derived data driven model is
not to replace the models based on physical processes, i.e.,
mechanistic models.

� The observed pressure drop was of the order of 2.00�107 Pa/m
and deviated from the predicted pressure drop by a mean
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absolute error of 2.16�106 Pa/m. The intercept and the slope
between the observed pressure drop and the predicted pressure
drop data are 17.673.22�105 Pa/m and 0.8570.03 respec-
tively. Our data set and the data set of Osterloh and Jante (1992)
show significant deviation from the chosen symbolic regression
model, which shows that the model has limitations. Possible
reasons are that Osterloh and Jante (1992) use mixtures of
surfactants and that our data set is confined to conditions that
lead to low pressure drops.

� The model from symbolic regression is able to elucidate the
general behavior and hierarchy of the variables affecting the
steady state pressure drop. The model gives the variable spaces
for which more experiments are needed. Considering an entire
data set shows that the trends obtained from a subset of the
data are not necessarily valid for the complete data set.
Acknowledgment

We thank Erasmus Mundus-India scholarship program for the
scholarship and Shell for financial support. We acknowledge nu-
merous useful suggestions of Prof. Dr. W.R. Rossen. We thank
Dr. R. Farajzadeh for initiating the project and Dr. A.A. Eftekhari for
information on the software ®Eureqa .
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.petrol.2015.12.001.
References

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans.
Autom. Control 19 (6), 716–723. http://dx.doi.org/10.1109/TAC.1974.1100705.

Ashoori, E., Marchesin, D., Rossen, W., 2011. Roles of transient and local equilibrium
foam behavior in porous media: traveling wave. Colloids Surf. A: Physicochem.
Eng. Aspects 377 (13), 228–242. http://dx.doi.org/10.1016/j.
colsurfa.2010.12.042.

Balan, H., Balhoff, M.T., Nguyen, Q.P., Rossen, W., 2011. Network modeling of gas
trapping and mobility in foam enhanced oil recovery. Energy Fuels 25 (9),
3974–3987. http://dx.doi.org/10.1021/ef2006707.

Barenblatt, V., Entov, G.I., Ryzhik, V., 1989. Theory of Fluid Flows through Natural
Rocks. Kluwer, Dordrecht.

Bernard, G.G., Holm, L.W., 1964. Effect of foam on permeability of porous media to
gas. SPE J. 4, 267–274. http://dx.doi.org/10.2118/983-PA.

Bertin, H., Quintard, M., Castanier, L., 1998. Development of a bubble-population
correlation for foam-flow modeling in porous media. SPE J. 3 (4), 356–362.
http://dx.doi.org/10.2118/52596-PA.

Bertin, H.J., Apaydin, O.G., Castanier, L.M., Kovscek, A.R., 1999. Foam flow in het-
erogeneous porous media: effect of cross flow. SPE J. 4 (2), 75–82. http://dx.doi.
org/10.2118/39678-MS.

Boeije, C., Rossen, W., 2013. Fitting foam simulation model parameters to data. In:
IOR 2013: 17th European Symposium on Improved Oil Recovery, St. Petersburg,
Russia, 16–18 April, EAGE, 1–16, http://dx.doi.org/10.3997/2214-4609.
20142604.

Boeije, C., Rossen, W., 2015. Fitting foam-simulation-model parameters to data: I.
Coinjection of gas and liquid. SPE Reserv. Eval. Eng. 18, 264–272. http://dx.doi.
org/10.2118/174544-PA.

Bond, D., Holbrook, O., 1958. Gas drive oil recovery process. US Patent 2,866,507.
Buckley, S.E., Leverett, M.C., 1942. Mechanism of fluid displacement in sands. Trans.

AIME 146 (01), 107–116.
Chou, S., 1991. Conditions for generating foam in porous media. In: SPE Annual

Technical Conference and Exhibition, 6–9 October, Dallas, Texas, Society of
Petroleum Engineers, pp. 353–364, http://dx.doi.org/10.2118/22628-MS.

Cohen, D., Patzek, T., Radke, C., 1997. Onset of mobilization and the fraction of
trapped foam in porous media. Transp. Porous Media 28 (3), 253–284. http:
//dx.doi.org/10.1023/A:1006552320036, ISSN 0169-3913.

Craig Jr., F., Lummus, J., 1965. Oil recovery by foam drive. US Patent 3,185,634.
de Vries, A.S., Wit, K., 1990. Rheology of gas/water foam in the quality range re-

levant to steam foam. SPE Reserv. Eng. 5 (2), 185–192. http://dx.doi.org/10.2118/
18075-PA.

Dyson, F., 2004. A meeting with Enrico Fermi. Nature 427 (6972), 297. http://dx.doi.
org/10.1038/427297a.
Efron, B., Tibshirani, R., 1993. An Introduction to the Bootstrap Monographs on
Statistics and Applied Probability vol. 57. Chapman Hall CRC, Dordrecht,
Netherlands, ISBN 0412042312.

Ettinger, R.A., Radke, C.J., 1992. Influence of texture on steady foam flow in Berea
sandstone. SPE Reserv. Eng. 7 (1), 83–90. http://dx.doi.org/10.2118/19688-PA.

Falls, A., Hirasaki, G., Patzek, T., Gauglitz, D., Miller, D., Ratulowski, T., 1988. De-
velopment of a mechanistic foam simulator: the population balance and gen-
eration by snap-off. SPE Reserv. Eng. 3 (3), 884–892. http://dx.doi.org/10.2118/
14961-PA.

Falls, A., Musters, J., Ratulowski, J., 1989. The apparent viscosity of foams in
homogeneous bead packs. SPE Reserv. Eng. 4 (2), 155–164. http://dx.doi.org/
10.2118/16048-PA.

Farajzadeh, R., Muruganathan, R.M., Rossen, W.R., Krastev, R., 2011. Effect of gas
type on foam film permeability and its implications for foam flow in porous
media. Adv. Colloid Interf. Sci. 168 (12), 71–78. http://dx.doi.org/10.1016/j.
cis.2011.03.005, ISSN 0001-8686.

Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G.J., Rossen, W.R., 2012. Foam–oil
interaction in porous media: implications for foam assisted enhanced oil re-
covery. Adv. Colloid Interf. Sci. 183–184, 1–13. http://dx.doi.org/10.1016/j.
cis.2012.07.002.

Fergui, O., Bertin, H., Quintard, M., 1998. Transient aqueous foam flow in porous
media: experiments and modeling. J. Pet. Sci. Eng. 20, 9–29. http://dx.doi.org/
10.1016/S0920-4105(98)00036-9, ISSN 0920-4105.

Friedmann, F., Jensen, A., 1986. Some parameters influencing the formation and
propagation of foams in porous media. In: SPE California Regional Meeting, 2–4
April, Oakland, California, Society of Petroleum Engineers, pp. 441–454, http://
dx.doi.org/10.2118/15087-MS.

Friedmann, F., Chen, W., Gauglitz, P., 1991. Experimental and simulation study of
high-temperature foam displacement in porous media. SPE Reserv. Eng. 6 (1),
37–45. http://dx.doi.org/10.2118/17357-PA.

Furniss, B., Hannaford, A., Smith, P., Tatchell, A., 1989. Vogel's Textbook of Practical
Organic Chemistry, 5th ed. Longman Group UK Limited, UK.

Hanssen, J.E., 1993. Foam as a gas-blocking agent in petroleum reservoirs I: em-
pirical observations and parametric study. J. Pet. Sci. Eng. 10 (2), 117–133. http:
//dx.doi.org/10.1016/0920-4105(93)90036-E.

Hirasaki, G., Lawson, J., 1985. Mechanisms of foam flow in porous media: apparent
viscosity in smooth capillaries. SPE J. 25 (2), 176–190. http://dx.doi.org/10.2118/
12129-PA.

Holm, L., 1968. The mechanism of gas and liquid flow through porous media in the
presence of foam. SPE J. 8 (4), 359–369. http://dx.doi.org/10.2118/1848-PA.

Huh, D., Handy, L., 1989. Comparison of steady and unsteady-state flow of gas and
foaming solution in porous media. SPE Reserv. Eng. 4 (1), 77–84. http://dx.doi.
org/10.2118/15078-PA.

Isaacs, E.E., McCarthy, F.C., Maunder, J.D., 1988. Investigation of foam stability in
porous media at elevated temperatures. SPE Reserv. Eng. 3, 565–572. http://dx.
doi.org/10.2118/15647-PA.

Kam, S.I., Rossen, W.R., 2003. A model for foam generation in homogeneous media.
SPE J. 8 (4), 417–425. http://dx.doi.org/10.2118/87334-PA.

Kapetas, L., Vincent Bonnieu, S., Danelis, S., Farajzadeh, R., Eftekhari, A., Mohd
Shafian, S.R., Kamarul Bahrim, R.Z., Rossen, W.R., 2015. Effect of temperature on
foam flow in porous media. In: SPE Middle East Oil & Gas Show and Conference,
8–11 March, Manama, Bahrain, Society of Petroleum Engineers, pp. 1–16, http://
dx.doi.org/10.2118/172781-MS.

Khatib, Z., Hirasaki, G., Falls, A., 1988. Effects of capillary pressure on coalescence
and phase mobilities in foams flowing through porous media. SPE Reserv. Eng.
3 (3), 919–926. http://dx.doi.org/10.2118/15442-PA.

Kovscek, A.R., Patzek, T.W., Radke, C.J., 1997. Mechanistic foam flow simulation in
heterogeneous and multidimensional porous media. SPE J. 2 (4), 511–526. http:
//dx.doi.org/10.2118/39102-PA.

Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J., 2013.
Estimation of parameters for the simulation of foam flow through porous
media. Part 1: the dry-out effect. Energy Fuels 27 (5), 2363–2375. http://dx.doi.
org/10.1021/ef302036s.

Ma, K., Lopez-Salinas, J.L., Miller, C.A., Biswal, S.L., Hirasaki, G.J., 2014. Non-un-
iqueness, numerical artifacts, and parameter sensitivity in simulating steady-
state and transient foam flow through porous media. Transp. Porous Media 102
(3), 325–348. http://dx.doi.org/10.1007/s11242-014-0276-9.

Ma, K., Ren, G., Mateen, K., Morrel, D., Cordelier, P., Hirasaki, G.J., 2015. Modeling
techniques for foam flow in porous media. SPE J. 20 (3), 453–470. http://dx.doi.
org/10.2118/169104-PA.

Martinez, J., 1998. Foam-flow Behaviour in Porous Media: Effects of Flow Regime
and Porous-Medium Heterogeneity (Ph.D. thesis). University of Texas at Austin.

Martinez, J., Rivas, H.J., Rossen, W.R., 2001. Unified model for steady-state foam
behavior at high and low foam qualities. SPE J. 6 (3), 325–333. http://dx.doi.org/
10.2118/74141-PA.

Mason, R., Gunst, R., Hess, J., 2003. Statistical Design and Analysis of Experiments,
2nd ed. John Wiley & Sons, Inc., Hoboken, New Jersey.

Montegomery, D., 2007. Design and Analysis of Experiments, 7th ed. John Wiley &
Sons, Inc., Hoboken, New Jersey.

Nguyen, Q., Zitha, P., Currie, P.K., 2002. Effect of foam films on gas diffusion. J.
Colloid Interf. Sci. 248 (2), 467–476. http://dx.doi.org/10.1006/jcis.2001.8155.

Nguyen, Q., Currie, P.K., Buijse, M., Zitha, P.L.J., 2007. Mapping of foam mobility in
porous media. J. Pet. Sci. Eng. 58 (1), 119–132. http://dx.doi.org/10.1016/j.
petrol.2006.12.007.

Nutonian, 2015. ®Eureqa Desktop 〈www.nutonian.com/products/eureqa/〉.
Olden, J.D., Jackson, D.A., 2000. Torturing data for the sake of generality: how valid

http://dx.doi.org/10.1016/j.petrol.2015.12.001
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/j.colsurfa.2010.12.042
http://dx.doi.org/10.1016/j.colsurfa.2010.12.042
http://dx.doi.org/10.1016/j.colsurfa.2010.12.042
http://dx.doi.org/10.1016/j.colsurfa.2010.12.042
http://dx.doi.org/10.1021/ef2006707
http://dx.doi.org/10.1021/ef2006707
http://dx.doi.org/10.1021/ef2006707
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref4
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref4
http://dx.doi.org/10.2118/983-PA
http://dx.doi.org/10.2118/983-PA
http://dx.doi.org/10.2118/983-PA
http://dx.doi.org/10.2118/52596-PA
http://dx.doi.org/10.2118/52596-PA
http://dx.doi.org/10.2118/52596-PA
http://dx.doi.org/10.2118/39678-MS
http://dx.doi.org/10.2118/39678-MS
http://dx.doi.org/10.2118/39678-MS
http://dx.doi.org/10.2118/39678-MS
dx.doi.org/10.3997/2214-4609.20142604
dx.doi.org/10.3997/2214-4609.20142604
http://dx.doi.org/10.2118/174544-PA
http://dx.doi.org/10.2118/174544-PA
http://dx.doi.org/10.2118/174544-PA
http://dx.doi.org/10.2118/174544-PA
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref11
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref11
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref11
dx.doi.org/10.2118/22628-MS
http://dx.doi.org/10.1023/A:1006552320036
http://dx.doi.org/10.1023/A:1006552320036
http://dx.doi.org/10.1023/A:1006552320036
http://dx.doi.org/10.1023/A:1006552320036
http://dx.doi.org/10.2118/18075-PA
http://dx.doi.org/10.2118/18075-PA
http://dx.doi.org/10.2118/18075-PA
http://dx.doi.org/10.2118/18075-PA
http://dx.doi.org/10.1038/427297a
http://dx.doi.org/10.1038/427297a
http://dx.doi.org/10.1038/427297a
http://dx.doi.org/10.1038/427297a
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref17
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref17
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref17
http://dx.doi.org/10.2118/19688-PA
http://dx.doi.org/10.2118/19688-PA
http://dx.doi.org/10.2118/19688-PA
http://dx.doi.org/10.2118/14961-PA
http://dx.doi.org/10.2118/14961-PA
http://dx.doi.org/10.2118/14961-PA
http://dx.doi.org/10.2118/14961-PA
http://dx.doi.org/10.2118/16048-PA
http://dx.doi.org/10.2118/16048-PA
http://dx.doi.org/10.2118/16048-PA
http://dx.doi.org/10.2118/16048-PA
http://dx.doi.org/10.1016/j.cis.2011.03.005
http://dx.doi.org/10.1016/j.cis.2011.03.005
http://dx.doi.org/10.1016/j.cis.2011.03.005
http://dx.doi.org/10.1016/j.cis.2011.03.005
http://dx.doi.org/10.1016/j.cis.2012.07.002
http://dx.doi.org/10.1016/j.cis.2012.07.002
http://dx.doi.org/10.1016/j.cis.2012.07.002
http://dx.doi.org/10.1016/j.cis.2012.07.002
http://dx.doi.org/10.1016/S0920-4105(98)00036-9
http://dx.doi.org/10.1016/S0920-4105(98)00036-9
http://dx.doi.org/10.1016/S0920-4105(98)00036-9
http://dx.doi.org/10.1016/S0920-4105(98)00036-9
dx.doi.org/10.2118/15087-MS
dx.doi.org/10.2118/15087-MS
http://dx.doi.org/10.2118/17357-PA
http://dx.doi.org/10.2118/17357-PA
http://dx.doi.org/10.2118/17357-PA
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref26
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref26
http://dx.doi.org/10.1016/0920-4105(93)90036-E
http://dx.doi.org/10.1016/0920-4105(93)90036-E
http://dx.doi.org/10.1016/0920-4105(93)90036-E
http://dx.doi.org/10.1016/0920-4105(93)90036-E
http://dx.doi.org/10.2118/12129-PA
http://dx.doi.org/10.2118/12129-PA
http://dx.doi.org/10.2118/12129-PA
http://dx.doi.org/10.2118/12129-PA
http://dx.doi.org/10.2118/1848-PA
http://dx.doi.org/10.2118/1848-PA
http://dx.doi.org/10.2118/1848-PA
http://dx.doi.org/10.2118/15078-PA
http://dx.doi.org/10.2118/15078-PA
http://dx.doi.org/10.2118/15078-PA
http://dx.doi.org/10.2118/15078-PA
http://dx.doi.org/10.2118/15647-PA
http://dx.doi.org/10.2118/15647-PA
http://dx.doi.org/10.2118/15647-PA
http://dx.doi.org/10.2118/15647-PA
http://dx.doi.org/10.2118/87334-PA
http://dx.doi.org/10.2118/87334-PA
http://dx.doi.org/10.2118/87334-PA
dx.doi.org/10.2118/172781-MS
dx.doi.org/10.2118/172781-MS
http://dx.doi.org/10.2118/15442-PA
http://dx.doi.org/10.2118/15442-PA
http://dx.doi.org/10.2118/15442-PA
http://dx.doi.org/10.2118/39102-PA
http://dx.doi.org/10.2118/39102-PA
http://dx.doi.org/10.2118/39102-PA
http://dx.doi.org/10.2118/39102-PA
http://dx.doi.org/10.1021/ef302036s
http://dx.doi.org/10.1021/ef302036s
http://dx.doi.org/10.1021/ef302036s
http://dx.doi.org/10.1021/ef302036s
http://dx.doi.org/10.1007/s11242-014-0276-9
http://dx.doi.org/10.1007/s11242-014-0276-9
http://dx.doi.org/10.1007/s11242-014-0276-9
http://dx.doi.org/10.2118/169104-PA
http://dx.doi.org/10.2118/169104-PA
http://dx.doi.org/10.2118/169104-PA
http://dx.doi.org/10.2118/169104-PA
http://dx.doi.org/10.2118/74141-PA
http://dx.doi.org/10.2118/74141-PA
http://dx.doi.org/10.2118/74141-PA
http://dx.doi.org/10.2118/74141-PA
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref41
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref41
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref41
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref42
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref42
http://dx.doi.org/10.1006/jcis.2001.8155
http://dx.doi.org/10.1006/jcis.2001.8155
http://dx.doi.org/10.1006/jcis.2001.8155
http://dx.doi.org/10.1016/j.petrol.2006.12.007
http://dx.doi.org/10.1016/j.petrol.2006.12.007
http://dx.doi.org/10.1016/j.petrol.2006.12.007
http://dx.doi.org/10.1016/j.petrol.2006.12.007
http://www.nutonian.com/products/eureqa/


R. Thorat, H. Bruining / Journal of Petroleum Science and Engineering 141 (2016) 144–156156
are our regression models?. Ecoscience 7 (4), 501–510, URL: 〈http://www.jstor.
org/stable/42901269〉.

Osoba, J.S., Richardson, J.G., Kerver, J.K., Hafford, J.A., Blair, P.M., 1951. Laboratory
measurements of relative permeability. J. Pet. Technol. 3. http://dx.doi.org/
10.2118/951047-G.

Osterloh, W., Jante Jr., M., 1992. Effects of gas and liquid velocity on steady-state
foam flow at high temperature. In: SPE/DOE Enhanced Oil Recovery Sympo-
sium, 22–24 April, Tulsa, Oklahoma, Society of Petroleum Engineers, pp. 237–
248, http://dx.doi.org/10.2118/24179-MS.

Overbeek, J., 1971. Colloid and Surface Chemistry. Lyophobic Colloids, vol. 2. Mas-
sacheusetts Institute of Technology, Cambridge, MA.

Panda, M.N., Lake, L.W., 1994. Estimation of single-phase permeability from para-
meters of particle-size distribution. AAPG Bull. 78 (7), 1028–1039.

Pang, Z.-X., 2010. The blocking ability and flowing characteristics of steady foams in
porous media. Transp. Porous Media 85 (1), 299–316. http://dx.doi.org/10.1007/
s11242-010-9563-2, ISSN 0169-3913.

Persoff, P., Radke, C., Pruess, K., Benson, S., Witherspoon, P., 1991. A laboratory in-
vestigation of foam flow in sandstone at elevated pressure. SPE Reserv. Eng. 6
(3), 365–372. http://dx.doi.org/10.2118/18781-PA.

Press, H., Teukolsky, S.A., Vetterling, W., Flannery, B., 2007. Numerical Recipes, 3rd
ed. Cambridge University Press, New York.

Raynolds, A., 2014. Sensitivity Interpretation 〈http://formulize.nutonian.com/
forum〉.

Reviewer, 2015. Review “Determination of the most significant variables affecting
the steady state pressure drop in selected foam flow experiments”. Manuscript
number PETROL6802.

Rossen, W.R., Boeije, C.S., 2015. Fitting foam-simulation-model parameters to data:
II. Surfactant-alternating-gas foam applications. SPE Reserv. Eval. Eng. 18 (2),
273–283. http://dx.doi.org/10.2118/165282-PA.

Rossen, W.R., Gauglitz, P.A., 1990. Percolation theory of creation and mobilization of
foams in porous media. AIChE J. 36 (8), 1176–1188. http://dx.doi.org/10.1002/
aic.690360807.

Rossen, W.R., Wang, M.W., 1999. Modeling foams for acid diversion. SPE J. 4,
92–100. http://dx.doi.org/10.2118/56396-PA.

Rossen, W.R., Zhou, Z.H., Mamun, C.K., 1995. Modeling foam mobility in porous
media. SPE Adv. Technol. Ser. 3, 146–153. http://dx.doi.org/10.2118/22627-PA.

Rossen, W., Zeilinger, S., Shi, J.-X., Lim, M., 1999. Simplified mechanistic simulation
of foam processes in porous media. SPE J. 4 (3), 279–287. http://dx.doi.org/
10.2118/57678-PA.

Schelero, N., Hedicke, G., Linse, P., Klitzing, R.v., 2010. Effects of counterions and co-
ions on foam films stabilized by anionic dodecyl sulfate. J. Phys. Chem. B 114
(47), 15523–15529. http://dx.doi.org/10.1021/jp1070488.

Schmidt, M., Lipson, H., 2009. Distilling free-form natural laws from experimental
data. Science 324 (5923), 81–85. http://dx.doi.org/10.1126/science.1165893.

Simjoo, M., 2012. Immiscible Foam for Enhanced Oil Recovery (Ph.D. thesis). Delft
University of Technology.

Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., Zitha, P.L.J., 2013. Novel insight
into foam mobility control. SPE J. 18 (3), 416–427. http://dx.doi.org/10.2118/
163092-PA.
Solbakken, J.S., Skauge, A., Aarra, M.G., 2014. Foam performance in low permeability
laminated sandstones. Energy Fuels 28 (2), 803–815. http://dx.doi.org/10.1021/
ef402020x.

Svorstøl, I., Vassenden, F., Mannhardt, K., 1996. Laboratory studies for design of a
foam pilot in the Snorre field. In: SPE/DOE Improved Oil Recovery Symposium,
21–24 April, Tulsa, Oklahoma, Society of Petroleum Engineers, pp. 563–573,
http://dx.doi.org/10.2118/35400-MS.

Tang, G.Q., Kovscek, A.R., 2006. Trapped gas fraction during steady-state foam flow.
Transp. Porous Media 65 (2), 287–307. http://dx.doi.org/10.1007/
s11242-005-6093-4.

Thorat, R., Bruining, H., 2016. Foam flow experiments. I. Estimation of the bubble
generation function. Transp. Porous Media, accepted for publication.

Veeramachaneni, K., Vladislavleva, E., O'Reilly, U.M., 2012. Knowledge mining
sensory evaluation data: genetic programming, statistical techniques, and
swarm optimization. Gen. Programm. Evol. Mach. 13 (1), 103–133. http://dx.
doi.org/10.1007/s10710-011-9153-2.

Vittinghoff, E., Glidden, D., Shiboski, S., McCulloch, C., 2012. Basic statistical
methods. In: Regression Methods in Biostatistics, Statistics for Biology and
Health. Springer, US, pp. 27–67.

Vladislavleva, K., Veeramachaneni, K. O'Reilly, U.M., Burland, M., Parcon, J., 2010.
Learning a lot from only a little: genetic programming for panel segmentation
on sparse sensory evaluation data. In: Genetic Programming, Lecture Notes in
Computer Science, vol. 6021. Springer, Berlin, Heidelberg, ISBN 978-3-642-
12147-0, pp. 244–255.

Wang, S., Mulligan, C.N., 2004. An evaluation of surfactant foam technology in re-
mediation of contaminated soil. Chemosphere 57 (9), 1079–1089. http://dx.doi.
org/10.1016/j.chemosphere.2004.08.019.

Wang, L., Yoon, R.-H., 2009. Effect of pH and NaCl concentration on the stability of
surfactant-free foam films. Langmuir 25 (1), 294–297. http://dx.doi.org/
10.1021/la802664k.

Wang, J., Liu, H., Ning, Z., Zhang, H., 2012. Experimental research and quantitative
characterization of nitrogen foam blocking characteristics. Energy Fuels 26 (8),
5152–5163. http://dx.doi.org/10.1021/ef300939j.

Wygal, R., 1963. Construction of models that simulate oil reservoirs. SPE J. 3 (4),
281–286. http://dx.doi.org/10.2118/534-PA.

Xu, Q., Rossen, W., 2003. Effective viscosity of foam in periodically constricted
tubes. Colloids Surf. A: Physicochem. Eng. Aspects 216 (13), 175–194. http://dx.
doi.org/10.1016/S0927-7757(02)00547-2, ISSN 0927-7757.

Yortsos, Y., Chang, J., 1990. Capillary effects in steady-state flow in heterogeneous
cores. Transp. Porous Media 5 (4), 399–420. http://dx.doi.org/10.1007/
BF01141993, cited by 38.

Zhao, L., Li, A., Chen, K., Tang, J., Fu, S., 2012. Development and evaluation of
foaming agents for high salinity tolerance. J. Pet. Sci. Eng. 81, 18–23. http://dx.
doi.org/10.1016/j.petrol.2011.11.006.

Zitha, P.L.J., Du, D.X., Uijttenhout, M., Nguyen, Q.P., 2006. Numerical analysis of a
new stochastic bubble population foam model. In: SPE/DOE Symposium on
Improved Oil Recovery, 22–26 April, Tulsa, USA, Society of Petroleum En-
gineers, pp. 1–14, http://dx.doi.org/10.2118/99747-MS.

http://www.jstor.org/stable/42901269
http://www.jstor.org/stable/42901269
http://dx.doi.org/10.2118/951047-G
http://dx.doi.org/10.2118/951047-G
http://dx.doi.org/10.2118/951047-G
http://dx.doi.org/10.2118/951047-G
dx.doi.org/10.2118/24179-MS
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref50
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref50
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref50
http://dx.doi.org/10.1007/s11242-010-9563-2
http://dx.doi.org/10.1007/s11242-010-9563-2
http://dx.doi.org/10.1007/s11242-010-9563-2
http://dx.doi.org/10.1007/s11242-010-9563-2
http://dx.doi.org/10.2118/18781-PA
http://dx.doi.org/10.2118/18781-PA
http://dx.doi.org/10.2118/18781-PA
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref53
http://refhub.elsevier.com/S0920-4105(15)30208-4/sbref53
http://formulize.nutonian.com/forum
http://formulize.nutonian.com/forum
http://dx.doi.org/10.2118/165282-PA
http://dx.doi.org/10.2118/165282-PA
http://dx.doi.org/10.2118/165282-PA
http://dx.doi.org/10.1002/aic.690360807
http://dx.doi.org/10.1002/aic.690360807
http://dx.doi.org/10.1002/aic.690360807
http://dx.doi.org/10.1002/aic.690360807
http://dx.doi.org/10.2118/56396-PA
http://dx.doi.org/10.2118/56396-PA
http://dx.doi.org/10.2118/56396-PA
http://dx.doi.org/10.2118/22627-PA
http://dx.doi.org/10.2118/22627-PA
http://dx.doi.org/10.2118/22627-PA
http://dx.doi.org/10.2118/57678-PA
http://dx.doi.org/10.2118/57678-PA
http://dx.doi.org/10.2118/57678-PA
http://dx.doi.org/10.2118/57678-PA
http://dx.doi.org/10.1021/jp1070488
http://dx.doi.org/10.1021/jp1070488
http://dx.doi.org/10.1021/jp1070488
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.2118/163092-PA
http://dx.doi.org/10.2118/163092-PA
http://dx.doi.org/10.2118/163092-PA
http://dx.doi.org/10.2118/163092-PA
http://dx.doi.org/10.1021/ef402020x
http://dx.doi.org/10.1021/ef402020x
http://dx.doi.org/10.1021/ef402020x
http://dx.doi.org/10.1021/ef402020x
dx.doi.org/10.2118/35400-MS
http://dx.doi.org/10.1007/s11242-005-6093-4
http://dx.doi.org/10.1007/s11242-005-6093-4
http://dx.doi.org/10.1007/s11242-005-6093-4
http://dx.doi.org/10.1007/s11242-005-6093-4
http://dx.doi.org/10.1007/s10710-011-9153-2
http://dx.doi.org/10.1007/s10710-011-9153-2
http://dx.doi.org/10.1007/s10710-011-9153-2
http://dx.doi.org/10.1007/s10710-011-9153-2
http://dx.doi.org/10.1016/j.chemosphere.2004.08.019
http://dx.doi.org/10.1016/j.chemosphere.2004.08.019
http://dx.doi.org/10.1016/j.chemosphere.2004.08.019
http://dx.doi.org/10.1016/j.chemosphere.2004.08.019
http://dx.doi.org/10.1021/la802664k
http://dx.doi.org/10.1021/la802664k
http://dx.doi.org/10.1021/la802664k
http://dx.doi.org/10.1021/la802664k
http://dx.doi.org/10.1021/ef300939j
http://dx.doi.org/10.1021/ef300939j
http://dx.doi.org/10.1021/ef300939j
http://dx.doi.org/10.2118/534-PA
http://dx.doi.org/10.2118/534-PA
http://dx.doi.org/10.2118/534-PA
http://dx.doi.org/10.1016/S0927-7757(02)00547-2
http://dx.doi.org/10.1016/S0927-7757(02)00547-2
http://dx.doi.org/10.1016/S0927-7757(02)00547-2
http://dx.doi.org/10.1016/S0927-7757(02)00547-2
http://dx.doi.org/10.1007/BF01141993
http://dx.doi.org/10.1007/BF01141993
http://dx.doi.org/10.1007/BF01141993
http://dx.doi.org/10.1007/BF01141993
http://dx.doi.org/10.1016/j.petrol.2011.11.006
http://dx.doi.org/10.1016/j.petrol.2011.11.006
http://dx.doi.org/10.1016/j.petrol.2011.11.006
http://dx.doi.org/10.1016/j.petrol.2011.11.006
dx.doi.org/10.2118/99747-MS

	Determination of the most significant variables affecting the steady state pressure drop in selected foam flow experiments
	Introduction
	Experimental section
	Porous media and surfactant solutions
	Experimental set up and procedure
	Foam flow experiments

	Results
	Statistical modeling
	Statistical results

	Discussion
	Experimental analysis
	Statistical analysis

	Conclusions
	Acknowledgment
	Supplementary data
	References




